Abstract

By exploiting unique properties of the atmospheric propagation of radiation in the deep-ultraviolet band (200–300 nm), ultraviolet communications (UVC) offers the novel possibility of establishing non-line-of-sight (NLOS) optical links. UVC systems often employ photon-counting receivers, which may exhibit nonideal behavior owing to dead time, a period of time after the detection of a photon during which such a receiver is unable to detect subsequently impinging photons. In this paper, we extend a NLOS UVC channel model to account for dead time and then use this extended model to study the effects of dead time in representative system scenarios. Experimentally collected channel-sounding data is then used for model validation and real-world illustration of these effects. Finally, we investigate the effect of dead time on communication performance. The results demonstrate that dead time can have a significant impact in practical communication scenarios and suggest the usefulness of the proposed modeling framework in developing receiver designs that compensate for dead time effects.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Received response based heuristic LDPC code for short-range non-line-of-sight ultraviolet communication

Heng Qin, Yong Zuo, Dong Zhang, Yinghui Li, and Jian Wu
Opt. Express 25(5) 5018-5030 (2017)

Inhomogeneous Poisson process rate function inference from dead-time limited observations

Gunjan Verma and Robert J. Drost
J. Opt. Soc. Am. A 34(5) 770-782 (2017)

Study of effects of obstacle on non-line-of-sight ultraviolet communication links

Hailiang Zhang, Hongwei Yin, Honghui Jia, Juncai Yang, and Shengli Chang
Opt. Express 19(22) 21216-21226 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Drost and B. M. Sadler, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29, 084006 (2014).
    [Crossref]
  2. Z. Xu and B. M. Sadler, “Ultraviolet communications: Potential and state-of-the-art,” IEEE Commun. Mag. 46, 67–73 (2008).
    [Crossref]
  3. E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” Tech. Rep.274 (Aeronautical Research Associates of Princeton, Inc., 1976).
  4. D. M. Junge, “Non-line-of-sight electro-optic laser communications in the middle ultraviolet,” M.S. thesis (Naval Postgraduate School, 1977).
  5. M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8, 1964–1972 (1991).
    [Crossref]
  6. H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
    [Crossref]
  7. R. J. Drost, T. J. Moore, and B. M. Sadler, “Ultraviolet scattering propagation modeling: Analysis of path loss versus range,” J. Opt. Soc. Am. A 30, 2259–2265 (2013).
    [Crossref]
  8. D. M. Reilly, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. 69, 464–470 (1979).
    [Crossref]
  9. R. J. Drost, T. J. Moore, and B. M. Sadler, “UV communications channel modeling incorporating multiple scattering interactions,” J. Opt. Soc. Am. A 28, 686–695 (2011).
    [Crossref]
  10. Z. Xu, “Approximate performance analysis of wireless ultraviolet links,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2007), pp. 577–580.
  11. Q. He, B. M. Sadler, and Z. Xu, “Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications,” Proc. SPIE 7464, 74640H (2009).
    [Crossref]
  12. Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18, 12226–12238 (2010).
    [Crossref] [PubMed]
  13. R. J. Drost, P. L. Yu, K. S. Chan, and B. M. Sadler, “Physical-layer authentication for Poisson channels,” in Proceedings of IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2012), pp. 69–70.
  14. R. J. Drost, T. J. Moore, and B. M. Sadler, “Monte-Carlo-based multiple-scattering channel modeling for non-line-of-sight ultraviolet communications,” Proc. SPIE 8038, 803802 (2011).
    [Crossref]
  15. Q. He, Z. Xu, and B. M. Sadler, “Non-line-of-sight serial relayed link for optical wireless communications,” in Military Communications Conference (IEEE, 2010), pp. 1588–1593.
  16. J. W. Müller, “Bibliography on dead-time effects,” Tech. Rep. BIPM-81/11 (Bureau International des Poids et Mesurers, 1981).
    [Crossref]
  17. J. W. Müller, “Counting statistics of a Poisson process with dead time,” Tech. Rep. BIPM-111 (Bureau International des Poids et Mesurers, 1970).
  18. G. Vannucci and M. C. Teich, “Effects of rate variation on the counting statistics of dead-time-modified Poisson processes,” Opt. Commun. 25, 267–272 (1978).
    [Crossref]
  19. G. Bédard, “Dead-time corrections to the statistical distribution of photoelectrons,” Proc. Phys. Soc. 90, 131–141 (1967).
    [Crossref]
  20. B. I. Cantor and M. C. Teich, “Dead-time-corrected photocounting distributions for laser radiation,” J. Opt. Soc. Am. 65, 786–791 (1975).
    [Crossref]
  21. M. C. Teich and G. Vannucci, “Observation of dead-time-modified photocounting distributions for modulated laser radiation,” J. Opt. Soc. Am. 68, 1338–1342 (1978).
    [Crossref]
  22. M. C. Teich and B. I. Cantor, “Information, error, and imaging in deadtime-perturbed doubly stochastic Poisson counting systems,” IEEE J. Quantum Electron. QE-14, 993–1003 (1978).
    [Crossref]
  23. B. M. Mazoyer, M. S. Roos, and R. H. Huesman, “Dead time correction and counting statistics for positron tomography,” Phys. Med. Biol. 30, 385–399 (1985).
    [Crossref] [PubMed]
  24. D. F. Yu and J. A. Fessler, “Mean and variance of single photon counting with deadtime,” Phys. Med. Biol. 45, 2043–2056 (2000).
    [Crossref] [PubMed]
  25. P. Gatt, S. Johnson, and T. Nichols, “Dead-time effects on Geiger-mode APD performance,” Proc. SPIE 6550, 65500I (2007).
    [Crossref]
  26. M. L. Larsen and A. B. Kostinski, “Simple dead-time corrections for discrete time series of non-Poisson data,” Meas. Sci. Technol. 20, 095101 (2009).
    [Crossref]
  27. R. J. Drost, P. L. Yu, G. Chen, and B. M. Sadler, “Receiver dead time in non-line-of-sight ultraviolet communications,” Proc. SPIE 9114, 91140Q (2014).
    [Crossref]
  28. R. M. Gagliardi and S. Karp, Optical Communications (Wiley-Interscience, 1995).
  29. M. A. El-Shimy and S. Hranilovic, “Binary-input non-line-of-sight solar-blind UV channels: Modeling, capacity and coding,” IEEE J. Opt. Commun. Netw. 4, 1008–1019 (2012).
    [Crossref]
  30. R. Pasupathy, “Generating nonhomogeneous Poisson processes,” in Wiley Encyclopedia of Operations Research and Management Science (Wiley, 2011).
  31. G. Chen, R. J. Drost, B. M. Sadler, and L. Liao, “Long-distance ultraviolet scattering channel measurements: Analog vs. digital approaches,” in Conference on Lasers and Electro-Optics (IEEE, 2013), paper JTu4A.88.
  32. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley-Interscience, 1991).
    [Crossref]
  33. G. Chen, Z. Xu, H. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17, 3929–3940 (2009).
    [Crossref] [PubMed]

2014 (2)

R. J. Drost and B. M. Sadler, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29, 084006 (2014).
[Crossref]

R. J. Drost, P. L. Yu, G. Chen, and B. M. Sadler, “Receiver dead time in non-line-of-sight ultraviolet communications,” Proc. SPIE 9114, 91140Q (2014).
[Crossref]

2013 (1)

2012 (1)

M. A. El-Shimy and S. Hranilovic, “Binary-input non-line-of-sight solar-blind UV channels: Modeling, capacity and coding,” IEEE J. Opt. Commun. Netw. 4, 1008–1019 (2012).
[Crossref]

2011 (2)

R. J. Drost, T. J. Moore, and B. M. Sadler, “UV communications channel modeling incorporating multiple scattering interactions,” J. Opt. Soc. Am. A 28, 686–695 (2011).
[Crossref]

R. J. Drost, T. J. Moore, and B. M. Sadler, “Monte-Carlo-based multiple-scattering channel modeling for non-line-of-sight ultraviolet communications,” Proc. SPIE 8038, 803802 (2011).
[Crossref]

2010 (1)

2009 (4)

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

Q. He, B. M. Sadler, and Z. Xu, “Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications,” Proc. SPIE 7464, 74640H (2009).
[Crossref]

G. Chen, Z. Xu, H. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17, 3929–3940 (2009).
[Crossref] [PubMed]

M. L. Larsen and A. B. Kostinski, “Simple dead-time corrections for discrete time series of non-Poisson data,” Meas. Sci. Technol. 20, 095101 (2009).
[Crossref]

2008 (1)

Z. Xu and B. M. Sadler, “Ultraviolet communications: Potential and state-of-the-art,” IEEE Commun. Mag. 46, 67–73 (2008).
[Crossref]

2007 (1)

P. Gatt, S. Johnson, and T. Nichols, “Dead-time effects on Geiger-mode APD performance,” Proc. SPIE 6550, 65500I (2007).
[Crossref]

2000 (1)

D. F. Yu and J. A. Fessler, “Mean and variance of single photon counting with deadtime,” Phys. Med. Biol. 45, 2043–2056 (2000).
[Crossref] [PubMed]

1991 (1)

1985 (1)

B. M. Mazoyer, M. S. Roos, and R. H. Huesman, “Dead time correction and counting statistics for positron tomography,” Phys. Med. Biol. 30, 385–399 (1985).
[Crossref] [PubMed]

1979 (1)

1978 (3)

G. Vannucci and M. C. Teich, “Effects of rate variation on the counting statistics of dead-time-modified Poisson processes,” Opt. Commun. 25, 267–272 (1978).
[Crossref]

M. C. Teich and G. Vannucci, “Observation of dead-time-modified photocounting distributions for modulated laser radiation,” J. Opt. Soc. Am. 68, 1338–1342 (1978).
[Crossref]

M. C. Teich and B. I. Cantor, “Information, error, and imaging in deadtime-perturbed doubly stochastic Poisson counting systems,” IEEE J. Quantum Electron. QE-14, 993–1003 (1978).
[Crossref]

1975 (1)

1967 (1)

G. Bédard, “Dead-time corrections to the statistical distribution of photoelectrons,” Proc. Phys. Soc. 90, 131–141 (1967).
[Crossref]

Bédard, G.

G. Bédard, “Dead-time corrections to the statistical distribution of photoelectrons,” Proc. Phys. Soc. 90, 131–141 (1967).
[Crossref]

Cantor, B. I.

M. C. Teich and B. I. Cantor, “Information, error, and imaging in deadtime-perturbed doubly stochastic Poisson counting systems,” IEEE J. Quantum Electron. QE-14, 993–1003 (1978).
[Crossref]

B. I. Cantor and M. C. Teich, “Dead-time-corrected photocounting distributions for laser radiation,” J. Opt. Soc. Am. 65, 786–791 (1975).
[Crossref]

Chan, K. S.

R. J. Drost, P. L. Yu, K. S. Chan, and B. M. Sadler, “Physical-layer authentication for Poisson channels,” in Proceedings of IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2012), pp. 69–70.

Chen, G.

R. J. Drost, P. L. Yu, G. Chen, and B. M. Sadler, “Receiver dead time in non-line-of-sight ultraviolet communications,” Proc. SPIE 9114, 91140Q (2014).
[Crossref]

G. Chen, Z. Xu, H. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17, 3929–3940 (2009).
[Crossref] [PubMed]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

G. Chen, R. J. Drost, B. M. Sadler, and L. Liao, “Long-distance ultraviolet scattering channel measurements: Analog vs. digital approaches,” in Conference on Lasers and Electro-Optics (IEEE, 2013), paper JTu4A.88.

Cover, T. M.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley-Interscience, 1991).
[Crossref]

Ding, H.

G. Chen, Z. Xu, H. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17, 3929–3940 (2009).
[Crossref] [PubMed]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

Drost, R. J.

R. J. Drost and B. M. Sadler, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29, 084006 (2014).
[Crossref]

R. J. Drost, P. L. Yu, G. Chen, and B. M. Sadler, “Receiver dead time in non-line-of-sight ultraviolet communications,” Proc. SPIE 9114, 91140Q (2014).
[Crossref]

R. J. Drost, T. J. Moore, and B. M. Sadler, “Ultraviolet scattering propagation modeling: Analysis of path loss versus range,” J. Opt. Soc. Am. A 30, 2259–2265 (2013).
[Crossref]

R. J. Drost, T. J. Moore, and B. M. Sadler, “UV communications channel modeling incorporating multiple scattering interactions,” J. Opt. Soc. Am. A 28, 686–695 (2011).
[Crossref]

R. J. Drost, T. J. Moore, and B. M. Sadler, “Monte-Carlo-based multiple-scattering channel modeling for non-line-of-sight ultraviolet communications,” Proc. SPIE 8038, 803802 (2011).
[Crossref]

R. J. Drost, P. L. Yu, K. S. Chan, and B. M. Sadler, “Physical-layer authentication for Poisson channels,” in Proceedings of IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2012), pp. 69–70.

G. Chen, R. J. Drost, B. M. Sadler, and L. Liao, “Long-distance ultraviolet scattering channel measurements: Analog vs. digital approaches,” in Conference on Lasers and Electro-Optics (IEEE, 2013), paper JTu4A.88.

El-Shimy, M. A.

M. A. El-Shimy and S. Hranilovic, “Binary-input non-line-of-sight solar-blind UV channels: Modeling, capacity and coding,” IEEE J. Opt. Commun. Netw. 4, 1008–1019 (2012).
[Crossref]

Fessler, J. A.

D. F. Yu and J. A. Fessler, “Mean and variance of single photon counting with deadtime,” Phys. Med. Biol. 45, 2043–2056 (2000).
[Crossref] [PubMed]

Fishburne, E. S.

E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” Tech. Rep.274 (Aeronautical Research Associates of Princeton, Inc., 1976).

Gagliardi, R. M.

R. M. Gagliardi and S. Karp, Optical Communications (Wiley-Interscience, 1995).

Gatt, P.

P. Gatt, S. Johnson, and T. Nichols, “Dead-time effects on Geiger-mode APD performance,” Proc. SPIE 6550, 65500I (2007).
[Crossref]

He, Q.

Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18, 12226–12238 (2010).
[Crossref] [PubMed]

Q. He, B. M. Sadler, and Z. Xu, “Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications,” Proc. SPIE 7464, 74640H (2009).
[Crossref]

Q. He, Z. Xu, and B. M. Sadler, “Non-line-of-sight serial relayed link for optical wireless communications,” in Military Communications Conference (IEEE, 2010), pp. 1588–1593.

Hranilovic, S.

M. A. El-Shimy and S. Hranilovic, “Binary-input non-line-of-sight solar-blind UV channels: Modeling, capacity and coding,” IEEE J. Opt. Commun. Netw. 4, 1008–1019 (2012).
[Crossref]

Huesman, R. H.

B. M. Mazoyer, M. S. Roos, and R. H. Huesman, “Dead time correction and counting statistics for positron tomography,” Phys. Med. Biol. 30, 385–399 (1985).
[Crossref] [PubMed]

Johnson, S.

P. Gatt, S. Johnson, and T. Nichols, “Dead-time effects on Geiger-mode APD performance,” Proc. SPIE 6550, 65500I (2007).
[Crossref]

Junge, D. M.

D. M. Junge, “Non-line-of-sight electro-optic laser communications in the middle ultraviolet,” M.S. thesis (Naval Postgraduate School, 1977).

Karp, S.

R. M. Gagliardi and S. Karp, Optical Communications (Wiley-Interscience, 1995).

Kostinski, A. B.

M. L. Larsen and A. B. Kostinski, “Simple dead-time corrections for discrete time series of non-Poisson data,” Meas. Sci. Technol. 20, 095101 (2009).
[Crossref]

Larsen, M. L.

M. L. Larsen and A. B. Kostinski, “Simple dead-time corrections for discrete time series of non-Poisson data,” Meas. Sci. Technol. 20, 095101 (2009).
[Crossref]

Liao, L.

G. Chen, R. J. Drost, B. M. Sadler, and L. Liao, “Long-distance ultraviolet scattering channel measurements: Analog vs. digital approaches,” in Conference on Lasers and Electro-Optics (IEEE, 2013), paper JTu4A.88.

Luettgen, M. R.

Majumdar, A. K.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

Mazoyer, B. M.

B. M. Mazoyer, M. S. Roos, and R. H. Huesman, “Dead time correction and counting statistics for positron tomography,” Phys. Med. Biol. 30, 385–399 (1985).
[Crossref] [PubMed]

Moore, T. J.

Müller, J. W.

J. W. Müller, “Bibliography on dead-time effects,” Tech. Rep. BIPM-81/11 (Bureau International des Poids et Mesurers, 1981).
[Crossref]

J. W. Müller, “Counting statistics of a Poisson process with dead time,” Tech. Rep. BIPM-111 (Bureau International des Poids et Mesurers, 1970).

Neer, M. E.

E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” Tech. Rep.274 (Aeronautical Research Associates of Princeton, Inc., 1976).

Nichols, T.

P. Gatt, S. Johnson, and T. Nichols, “Dead-time effects on Geiger-mode APD performance,” Proc. SPIE 6550, 65500I (2007).
[Crossref]

Pasupathy, R.

R. Pasupathy, “Generating nonhomogeneous Poisson processes,” in Wiley Encyclopedia of Operations Research and Management Science (Wiley, 2011).

Reilly, D. M.

Roos, M. S.

B. M. Mazoyer, M. S. Roos, and R. H. Huesman, “Dead time correction and counting statistics for positron tomography,” Phys. Med. Biol. 30, 385–399 (1985).
[Crossref] [PubMed]

Sadler, B. M.

R. J. Drost and B. M. Sadler, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29, 084006 (2014).
[Crossref]

R. J. Drost, P. L. Yu, G. Chen, and B. M. Sadler, “Receiver dead time in non-line-of-sight ultraviolet communications,” Proc. SPIE 9114, 91140Q (2014).
[Crossref]

R. J. Drost, T. J. Moore, and B. M. Sadler, “Ultraviolet scattering propagation modeling: Analysis of path loss versus range,” J. Opt. Soc. Am. A 30, 2259–2265 (2013).
[Crossref]

R. J. Drost, T. J. Moore, and B. M. Sadler, “UV communications channel modeling incorporating multiple scattering interactions,” J. Opt. Soc. Am. A 28, 686–695 (2011).
[Crossref]

R. J. Drost, T. J. Moore, and B. M. Sadler, “Monte-Carlo-based multiple-scattering channel modeling for non-line-of-sight ultraviolet communications,” Proc. SPIE 8038, 803802 (2011).
[Crossref]

Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18, 12226–12238 (2010).
[Crossref] [PubMed]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

G. Chen, Z. Xu, H. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17, 3929–3940 (2009).
[Crossref] [PubMed]

Q. He, B. M. Sadler, and Z. Xu, “Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications,” Proc. SPIE 7464, 74640H (2009).
[Crossref]

Z. Xu and B. M. Sadler, “Ultraviolet communications: Potential and state-of-the-art,” IEEE Commun. Mag. 46, 67–73 (2008).
[Crossref]

R. J. Drost, P. L. Yu, K. S. Chan, and B. M. Sadler, “Physical-layer authentication for Poisson channels,” in Proceedings of IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2012), pp. 69–70.

Q. He, Z. Xu, and B. M. Sadler, “Non-line-of-sight serial relayed link for optical wireless communications,” in Military Communications Conference (IEEE, 2010), pp. 1588–1593.

G. Chen, R. J. Drost, B. M. Sadler, and L. Liao, “Long-distance ultraviolet scattering channel measurements: Analog vs. digital approaches,” in Conference on Lasers and Electro-Optics (IEEE, 2013), paper JTu4A.88.

Sandri, G.

E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” Tech. Rep.274 (Aeronautical Research Associates of Princeton, Inc., 1976).

Shapiro, J. H.

Teich, M. C.

M. C. Teich and G. Vannucci, “Observation of dead-time-modified photocounting distributions for modulated laser radiation,” J. Opt. Soc. Am. 68, 1338–1342 (1978).
[Crossref]

G. Vannucci and M. C. Teich, “Effects of rate variation on the counting statistics of dead-time-modified Poisson processes,” Opt. Commun. 25, 267–272 (1978).
[Crossref]

M. C. Teich and B. I. Cantor, “Information, error, and imaging in deadtime-perturbed doubly stochastic Poisson counting systems,” IEEE J. Quantum Electron. QE-14, 993–1003 (1978).
[Crossref]

B. I. Cantor and M. C. Teich, “Dead-time-corrected photocounting distributions for laser radiation,” J. Opt. Soc. Am. 65, 786–791 (1975).
[Crossref]

Thomas, J. A.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley-Interscience, 1991).
[Crossref]

Vannucci, G.

M. C. Teich and G. Vannucci, “Observation of dead-time-modified photocounting distributions for modulated laser radiation,” J. Opt. Soc. Am. 68, 1338–1342 (1978).
[Crossref]

G. Vannucci and M. C. Teich, “Effects of rate variation on the counting statistics of dead-time-modified Poisson processes,” Opt. Commun. 25, 267–272 (1978).
[Crossref]

Xu, Z.

Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18, 12226–12238 (2010).
[Crossref] [PubMed]

G. Chen, Z. Xu, H. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17, 3929–3940 (2009).
[Crossref] [PubMed]

Q. He, B. M. Sadler, and Z. Xu, “Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications,” Proc. SPIE 7464, 74640H (2009).
[Crossref]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

Z. Xu and B. M. Sadler, “Ultraviolet communications: Potential and state-of-the-art,” IEEE Commun. Mag. 46, 67–73 (2008).
[Crossref]

Q. He, Z. Xu, and B. M. Sadler, “Non-line-of-sight serial relayed link for optical wireless communications,” in Military Communications Conference (IEEE, 2010), pp. 1588–1593.

Z. Xu, “Approximate performance analysis of wireless ultraviolet links,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2007), pp. 577–580.

Yu, D. F.

D. F. Yu and J. A. Fessler, “Mean and variance of single photon counting with deadtime,” Phys. Med. Biol. 45, 2043–2056 (2000).
[Crossref] [PubMed]

Yu, P. L.

R. J. Drost, P. L. Yu, G. Chen, and B. M. Sadler, “Receiver dead time in non-line-of-sight ultraviolet communications,” Proc. SPIE 9114, 91140Q (2014).
[Crossref]

R. J. Drost, P. L. Yu, K. S. Chan, and B. M. Sadler, “Physical-layer authentication for Poisson channels,” in Proceedings of IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2012), pp. 69–70.

IEEE Commun. Mag. (1)

Z. Xu and B. M. Sadler, “Ultraviolet communications: Potential and state-of-the-art,” IEEE Commun. Mag. 46, 67–73 (2008).
[Crossref]

IEEE J. Opt. Commun. Netw. (1)

M. A. El-Shimy and S. Hranilovic, “Binary-input non-line-of-sight solar-blind UV channels: Modeling, capacity and coding,” IEEE J. Opt. Commun. Netw. 4, 1008–1019 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

M. C. Teich and B. I. Cantor, “Information, error, and imaging in deadtime-perturbed doubly stochastic Poisson counting systems,” IEEE J. Quantum Electron. QE-14, 993–1003 (1978).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (3)

Meas. Sci. Technol. (1)

M. L. Larsen and A. B. Kostinski, “Simple dead-time corrections for discrete time series of non-Poisson data,” Meas. Sci. Technol. 20, 095101 (2009).
[Crossref]

Opt. Commun. (1)

G. Vannucci and M. C. Teich, “Effects of rate variation on the counting statistics of dead-time-modified Poisson processes,” Opt. Commun. 25, 267–272 (1978).
[Crossref]

Opt. Express (2)

Phys. Med. Biol. (2)

B. M. Mazoyer, M. S. Roos, and R. H. Huesman, “Dead time correction and counting statistics for positron tomography,” Phys. Med. Biol. 30, 385–399 (1985).
[Crossref] [PubMed]

D. F. Yu and J. A. Fessler, “Mean and variance of single photon counting with deadtime,” Phys. Med. Biol. 45, 2043–2056 (2000).
[Crossref] [PubMed]

Proc. Phys. Soc. (1)

G. Bédard, “Dead-time corrections to the statistical distribution of photoelectrons,” Proc. Phys. Soc. 90, 131–141 (1967).
[Crossref]

Proc. SPIE (4)

R. J. Drost, T. J. Moore, and B. M. Sadler, “Monte-Carlo-based multiple-scattering channel modeling for non-line-of-sight ultraviolet communications,” Proc. SPIE 8038, 803802 (2011).
[Crossref]

P. Gatt, S. Johnson, and T. Nichols, “Dead-time effects on Geiger-mode APD performance,” Proc. SPIE 6550, 65500I (2007).
[Crossref]

R. J. Drost, P. L. Yu, G. Chen, and B. M. Sadler, “Receiver dead time in non-line-of-sight ultraviolet communications,” Proc. SPIE 9114, 91140Q (2014).
[Crossref]

Q. He, B. M. Sadler, and Z. Xu, “Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications,” Proc. SPIE 7464, 74640H (2009).
[Crossref]

Semicond. Sci. Technol. (1)

R. J. Drost and B. M. Sadler, “Survey of ultraviolet non-line-of-sight communications,” Semicond. Sci. Technol. 29, 084006 (2014).
[Crossref]

Other (11)

E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” Tech. Rep.274 (Aeronautical Research Associates of Princeton, Inc., 1976).

D. M. Junge, “Non-line-of-sight electro-optic laser communications in the middle ultraviolet,” M.S. thesis (Naval Postgraduate School, 1977).

Z. Xu, “Approximate performance analysis of wireless ultraviolet links,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2007), pp. 577–580.

Q. He, Z. Xu, and B. M. Sadler, “Non-line-of-sight serial relayed link for optical wireless communications,” in Military Communications Conference (IEEE, 2010), pp. 1588–1593.

J. W. Müller, “Bibliography on dead-time effects,” Tech. Rep. BIPM-81/11 (Bureau International des Poids et Mesurers, 1981).
[Crossref]

J. W. Müller, “Counting statistics of a Poisson process with dead time,” Tech. Rep. BIPM-111 (Bureau International des Poids et Mesurers, 1970).

R. J. Drost, P. L. Yu, K. S. Chan, and B. M. Sadler, “Physical-layer authentication for Poisson channels,” in Proceedings of IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2012), pp. 69–70.

R. Pasupathy, “Generating nonhomogeneous Poisson processes,” in Wiley Encyclopedia of Operations Research and Management Science (Wiley, 2011).

G. Chen, R. J. Drost, B. M. Sadler, and L. Liao, “Long-distance ultraviolet scattering channel measurements: Analog vs. digital approaches,” in Conference on Lasers and Electro-Optics (IEEE, 2013), paper JTu4A.88.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley-Interscience, 1991).
[Crossref]

R. M. Gagliardi and S. Karp, Optical Communications (Wiley-Interscience, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Notation for (a) a UVC system geometry [9] and (b) a planar photon propagation path from the transmitter to the receiver [7].
Fig. 2
Fig. 2 Model predictions of rate functions for various system geometries [27]. Note the varying scales of the axes.
Fig. 3
Fig. 3 Model predictions of total loss and dead time loss for θT = 80°, where in (a) solid lines correspond to an ideal detector with no dead time (τ = 0) and dashed lines correspond to a practical detector with dead time τ = 40 ns [27].
Fig. 4
Fig. 4 Model predictions of total loss and dead time loss for θR = 0°, where in (a) solid lines correspond to an ideal detector with no dead time (τ = 0) and dashed lines correspond to a practical detector with dead time τ = 40 ns [27].
Fig. 5
Fig. 5 Comparisons of experimental results and model predictions for experimental system configurations with (a) a range of 400 m and a transmitter elevation angle of 70° and (b) a range of 758 m and a receiver elevation angle of 90°.
Fig. 6
Fig. 6 PMFs of received counts for illustrative system configurations with (a) r = 1139 m and Epulse = 4 mJ, (b) r = 1139 m and Epulse = 40 mJ, (c) r = 3844 m and Epulse = 4 mJ, and (d) r = 3844 m and Epulse = 40 mJ.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P D , n = 𝒫 [ i = 0 n f i ( α i , ψ i ) e ( k a + k s r i ) ] k s n f R ( α n + 1 , ψ n + 1 ) 1 r n 2 A R [ i = 0 n 1 sin α i d r i d α i d ψ i ] .
P D = n 0 P D , n ,
μ = N Tx P D η f η q ,
μ ( t ) = N Tx [ ( h * p Tx ) ( t ) ] η f η q ,
μ t 1 t 2 = t 1 t 2 μ ( t ) d t .
μ ˇ [ n ] μ [ n ] / i μ [ i ]
M ( n T ) = i = 1 n μ ˇ [ i ] ,
N τ ( t ) = | { t ˜ 𝒯 ˜ : t ˜ t } | ,
TL τ = 10 log 10 ( μ τ / N Tx ) .

Metrics