Abstract

Experimental evidence of photon Wannier-stark ladders (WSLs) and Zener tunneling (ZT) in one dimensional dual-periodical (DP) optical superlattices based on Porous Silicon (PSi), is presented. An introduction of linear gradient in physical thickness of the layers, composed of five stacks of two different periodic substructures, resulted in the appearance of four WSLs resonances and resonant Zener tunneling of nearest resonances of two consecutive WSLs. Theoretical analysis of time-resolved reflection spectra as a function of gradient reveals the presence of photonic Bloch oscillations (BOs) and an eventual tunneling at a specific value of linear gradient (20%), has been demonstrated through scattering maps. Measured reflection from different DP photonic structures confirm the presence of minibands, WSLs and ZT in the near infrared region.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical Bloch oscillations and Zener tunneling of Airy beams in ionic-type photonic lattices

Fajun Xiao, Weiren Zhu, Wuyun Shang, Meirong Wang, Peng Zhang, Sheng Liu, Malin Premaratne, and Jianlin Zhao
Opt. Express 24(16) 18332-18339 (2016)

Bloch oscillations in chirped layered structures with metamaterials

Arthur R. Davoyan, Ilya V. Shadrivov, Andrey A. Sukhorukov, and Yuri S. Kivshar
Opt. Express 16(5) 3299-3304 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Kavokin and G. Malpuech, “Photonic Bloch oscillations in laterally confined Bragg mirrors,” Phys. Rev. B 61, 4413–4416 (2000).
    [Crossref]
  2. G. Malpuech, A. Kavokin, G. Panzarini, and A. DiCarlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
    [Crossref]
  3. R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
    [Crossref]
  4. V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
    [Crossref] [PubMed]
  5. V. Lousse and S. Fan, “Tunable terahertz Bloch oscillations in chirped photonic crystals,” Phys. Rev. B 72, 075119 (2005).
    [Crossref]
  6. M. Ghulinyan, J. OtonClaudio, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
    [Crossref] [PubMed]
  7. T.-B. Wang, C.-P. Yin, W.-Y. Liang, and H.-Z. Wang, “Bloch oscillations in one-dimensional photonic crystal coupled microcavity composed of single-negative materials,” Phys. Lett. A 373, 4197–4200 (2009).
    [Crossref]
  8. X. Kang and Z. Wang, “Optical Bloch oscillation and resonant Zener tunneling in one-dimensional quasi-period structures containing single negative materials,” Opt. Commun. 282, 355–359 (2009).
    [Crossref]
  9. J. O. Estevez, J. Arriaga, A. Méndez-Blas, E. Reyes-Ayona, J. Escorcia, and V. Agarwal, “Demonstration of photon Bloch oscillations and Wannier-Stark ladders in dual-periodical multilayer structures based on porous silicon,” Nano. Res. Lett. 7, 413 (2012).
    [Crossref]
  10. J. O. Estevez, J. Arriaga, E. Reyes-Ayona, and V. Agarwal, “Photonic Bloch oscillations and Zener tunneling in dual-periodical multilayers made of porous silicon: effect of angle of incidence,” JNanoR 28, 83–90 (2014).
    [Crossref]
  11. F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Z Phys,  52, 555 (1928);;C. Zener, ”A theory of electrical breakdown of solid,” Dielectrics Proc R Soc,  145, London A, 523 (1934).
    [Crossref]
  12. E. Yablonovitch, “Inhibited spontaneous emission in solid-stated physic and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  13. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Phothonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).
  14. G. Monsivais, M. del Castillo-Mussot, and F. Claro, “Stark-Ladder resonances in the propagation of electromagnetic waves,” Phys. Rev. Lett. 64, 1433–1436 (1990).
    [Crossref] [PubMed]
  15. M. Ghulinyan, Z. Gaburro, D. S. Wiersma, and L. Pavesi, “Tuning of resonant Zener tunneling by vapor diffusion and condensation in porous optical superlattices,” Phys. Rev. B 74, 045118 (2006).
    [Crossref]
  16. P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nature Photonics 1, 172–175 (2007).
    [Crossref]
  17. Z. Gaburro, M. Ghulinyan, L. Pavesi, P. Barthelemy, C. Toninelli, and D. Wiersma, “Dynamics of capillary condensation in bistable optical superlattices,” Phys. Rev. B 77, 115354 (2008).
    [Crossref]
  18. R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001).
    [Crossref]
  19. Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003)
    [Crossref]
  20. A. G. Yamilov, M. R. Herrera, and M. F. Bertino, “Slow-light effect in dual-periodic photonic lattice,” J. Opt. Soc. Am. B 25, 599–608 (2008).
    [Crossref]
  21. K. Pérez, J. O. Estevez, A. Méndez-Blas, and J. Arriaga, “Localized defect modes in dual-periodical multilayer structures based on porous silicon,” J. Opt. Soc. Am. B 29, 538–542 (2012).
    [Crossref]
  22. Karina S. Pérez, J. Octavio Estevez, Antonio Méndez-Blas, Jesús Arriaga, Gabriela Palestino, and Miguel E. Mora-Ramos, “Tunable resonance transmission modes in hybrid heterostructures based on porous silicon,” Nano. Res. Lett. 7, 392 (2012).
    [Crossref]
  23. P. Yeh, Optical Waves in Layered Media (Wiley VCH, 1998).
  24. A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, and S. Szatmári, eds. “Optical properties of porous silicon. Part III: Comparision of experimental and theoretical results,” Opt. Mater. 28, 506–513 (2006).
    [Crossref]
  25. M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Stat. Sol. (c) 4, 1986–1990 (2007).
    [Crossref]
  26. S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-purpose software for optical characterization of thin films: specif features for microelectonic applications,” Solid-State Electronics 45, 703–709 (2001).
    [Crossref]

2014 (1)

J. O. Estevez, J. Arriaga, E. Reyes-Ayona, and V. Agarwal, “Photonic Bloch oscillations and Zener tunneling in dual-periodical multilayers made of porous silicon: effect of angle of incidence,” JNanoR 28, 83–90 (2014).
[Crossref]

2012 (3)

J. O. Estevez, J. Arriaga, A. Méndez-Blas, E. Reyes-Ayona, J. Escorcia, and V. Agarwal, “Demonstration of photon Bloch oscillations and Wannier-Stark ladders in dual-periodical multilayer structures based on porous silicon,” Nano. Res. Lett. 7, 413 (2012).
[Crossref]

Karina S. Pérez, J. Octavio Estevez, Antonio Méndez-Blas, Jesús Arriaga, Gabriela Palestino, and Miguel E. Mora-Ramos, “Tunable resonance transmission modes in hybrid heterostructures based on porous silicon,” Nano. Res. Lett. 7, 392 (2012).
[Crossref]

K. Pérez, J. O. Estevez, A. Méndez-Blas, and J. Arriaga, “Localized defect modes in dual-periodical multilayer structures based on porous silicon,” J. Opt. Soc. Am. B 29, 538–542 (2012).
[Crossref]

2009 (2)

T.-B. Wang, C.-P. Yin, W.-Y. Liang, and H.-Z. Wang, “Bloch oscillations in one-dimensional photonic crystal coupled microcavity composed of single-negative materials,” Phys. Lett. A 373, 4197–4200 (2009).
[Crossref]

X. Kang and Z. Wang, “Optical Bloch oscillation and resonant Zener tunneling in one-dimensional quasi-period structures containing single negative materials,” Opt. Commun. 282, 355–359 (2009).
[Crossref]

2008 (2)

Z. Gaburro, M. Ghulinyan, L. Pavesi, P. Barthelemy, C. Toninelli, and D. Wiersma, “Dynamics of capillary condensation in bistable optical superlattices,” Phys. Rev. B 77, 115354 (2008).
[Crossref]

A. G. Yamilov, M. R. Herrera, and M. F. Bertino, “Slow-light effect in dual-periodic photonic lattice,” J. Opt. Soc. Am. B 25, 599–608 (2008).
[Crossref]

2007 (2)

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Stat. Sol. (c) 4, 1986–1990 (2007).
[Crossref]

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nature Photonics 1, 172–175 (2007).
[Crossref]

2006 (2)

A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, and S. Szatmári, eds. “Optical properties of porous silicon. Part III: Comparision of experimental and theoretical results,” Opt. Mater. 28, 506–513 (2006).
[Crossref]

M. Ghulinyan, Z. Gaburro, D. S. Wiersma, and L. Pavesi, “Tuning of resonant Zener tunneling by vapor diffusion and condensation in porous optical superlattices,” Phys. Rev. B 74, 045118 (2006).
[Crossref]

2005 (2)

V. Lousse and S. Fan, “Tunable terahertz Bloch oscillations in chirped photonic crystals,” Phys. Rev. B 72, 075119 (2005).
[Crossref]

M. Ghulinyan, J. OtonClaudio, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[Crossref] [PubMed]

2004 (1)

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
[Crossref] [PubMed]

2003 (2)

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[Crossref]

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003)
[Crossref]

2001 (3)

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-purpose software for optical characterization of thin films: specif features for microelectonic applications,” Solid-State Electronics 45, 703–709 (2001).
[Crossref]

G. Malpuech, A. Kavokin, G. Panzarini, and A. DiCarlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
[Crossref]

R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001).
[Crossref]

2000 (1)

A. Kavokin and G. Malpuech, “Photonic Bloch oscillations in laterally confined Bragg mirrors,” Phys. Rev. B 61, 4413–4416 (2000).
[Crossref]

1990 (1)

G. Monsivais, M. del Castillo-Mussot, and F. Claro, “Stark-Ladder resonances in the propagation of electromagnetic waves,” Phys. Rev. Lett. 64, 1433–1436 (1990).
[Crossref] [PubMed]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-stated physic and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

1928 (1)

F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Z Phys,  52, 555 (1928);;C. Zener, ”A theory of electrical breakdown of solid,” Dielectrics Proc R Soc,  145, London A, 523 (1934).
[Crossref]

Agarwal, V.

J. O. Estevez, J. Arriaga, E. Reyes-Ayona, and V. Agarwal, “Photonic Bloch oscillations and Zener tunneling in dual-periodical multilayers made of porous silicon: effect of angle of incidence,” JNanoR 28, 83–90 (2014).
[Crossref]

J. O. Estevez, J. Arriaga, A. Méndez-Blas, E. Reyes-Ayona, J. Escorcia, and V. Agarwal, “Demonstration of photon Bloch oscillations and Wannier-Stark ladders in dual-periodical multilayer structures based on porous silicon,” Nano. Res. Lett. 7, 413 (2012).
[Crossref]

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
[Crossref] [PubMed]

Arriaga, J.

J. O. Estevez, J. Arriaga, E. Reyes-Ayona, and V. Agarwal, “Photonic Bloch oscillations and Zener tunneling in dual-periodical multilayers made of porous silicon: effect of angle of incidence,” JNanoR 28, 83–90 (2014).
[Crossref]

K. Pérez, J. O. Estevez, A. Méndez-Blas, and J. Arriaga, “Localized defect modes in dual-periodical multilayer structures based on porous silicon,” J. Opt. Soc. Am. B 29, 538–542 (2012).
[Crossref]

J. O. Estevez, J. Arriaga, A. Méndez-Blas, E. Reyes-Ayona, J. Escorcia, and V. Agarwal, “Demonstration of photon Bloch oscillations and Wannier-Stark ladders in dual-periodical multilayer structures based on porous silicon,” Nano. Res. Lett. 7, 413 (2012).
[Crossref]

Arriaga, Jesús

Karina S. Pérez, J. Octavio Estevez, Antonio Méndez-Blas, Jesús Arriaga, Gabriela Palestino, and Miguel E. Mora-Ramos, “Tunable resonance transmission modes in hybrid heterostructures based on porous silicon,” Nano. Res. Lett. 7, 392 (2012).
[Crossref]

Barthelemy, P.

Z. Gaburro, M. Ghulinyan, L. Pavesi, P. Barthelemy, C. Toninelli, and D. Wiersma, “Dynamics of capillary condensation in bistable optical superlattices,” Phys. Rev. B 77, 115354 (2008).
[Crossref]

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nature Photonics 1, 172–175 (2007).
[Crossref]

Bertino, M. F.

Bessaïs, B.

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Stat. Sol. (c) 4, 1986–1990 (2007).
[Crossref]

Bloch, F.

F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Z Phys,  52, 555 (1928);;C. Zener, ”A theory of electrical breakdown of solid,” Dielectrics Proc R Soc,  145, London A, 523 (1934).
[Crossref]

Bosch, S.

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-purpose software for optical characterization of thin films: specif features for microelectonic applications,” Solid-State Electronics 45, 703–709 (2001).
[Crossref]

Bouaïcha, M.

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Stat. Sol. (c) 4, 1986–1990 (2007).
[Crossref]

Claro, F.

G. Monsivais, M. del Castillo-Mussot, and F. Claro, “Stark-Ladder resonances in the propagation of electromagnetic waves,” Phys. Rev. Lett. 64, 1433–1436 (1990).
[Crossref] [PubMed]

Coquillat, D.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
[Crossref] [PubMed]

Costantino, P.

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[Crossref]

del Castillo-Mussot, M.

G. Monsivais, M. del Castillo-Mussot, and F. Claro, “Stark-Ladder resonances in the propagation of electromagnetic waves,” Phys. Rev. Lett. 64, 1433–1436 (1990).
[Crossref] [PubMed]

del Río, J. A.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
[Crossref] [PubMed]

DiCarlo, A.

G. Malpuech, A. Kavokin, G. Panzarini, and A. DiCarlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
[Crossref]

Escorcia, J.

J. O. Estevez, J. Arriaga, A. Méndez-Blas, E. Reyes-Ayona, J. Escorcia, and V. Agarwal, “Demonstration of photon Bloch oscillations and Wannier-Stark ladders in dual-periodical multilayer structures based on porous silicon,” Nano. Res. Lett. 7, 413 (2012).
[Crossref]

Estevez, J. O.

J. O. Estevez, J. Arriaga, E. Reyes-Ayona, and V. Agarwal, “Photonic Bloch oscillations and Zener tunneling in dual-periodical multilayers made of porous silicon: effect of angle of incidence,” JNanoR 28, 83–90 (2014).
[Crossref]

K. Pérez, J. O. Estevez, A. Méndez-Blas, and J. Arriaga, “Localized defect modes in dual-periodical multilayer structures based on porous silicon,” J. Opt. Soc. Am. B 29, 538–542 (2012).
[Crossref]

J. O. Estevez, J. Arriaga, A. Méndez-Blas, E. Reyes-Ayona, J. Escorcia, and V. Agarwal, “Demonstration of photon Bloch oscillations and Wannier-Stark ladders in dual-periodical multilayer structures based on porous silicon,” Nano. Res. Lett. 7, 413 (2012).
[Crossref]

Estevez, J. Octavio

Karina S. Pérez, J. Octavio Estevez, Antonio Méndez-Blas, Jesús Arriaga, Gabriela Palestino, and Miguel E. Mora-Ramos, “Tunable resonance transmission modes in hybrid heterostructures based on porous silicon,” Nano. Res. Lett. 7, 392 (2012).
[Crossref]

Fan, S.

V. Lousse and S. Fan, “Tunable terahertz Bloch oscillations in chirped photonic crystals,” Phys. Rev. B 72, 075119 (2005).
[Crossref]

Ferré-Borrull, J.

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-purpose software for optical characterization of thin films: specif features for microelectonic applications,” Solid-State Electronics 45, 703–709 (2001).
[Crossref]

Gaburro, Z.

Z. Gaburro, M. Ghulinyan, L. Pavesi, P. Barthelemy, C. Toninelli, and D. Wiersma, “Dynamics of capillary condensation in bistable optical superlattices,” Phys. Rev. B 77, 115354 (2008).
[Crossref]

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nature Photonics 1, 172–175 (2007).
[Crossref]

M. Ghulinyan, Z. Gaburro, D. S. Wiersma, and L. Pavesi, “Tuning of resonant Zener tunneling by vapor diffusion and condensation in porous optical superlattices,” Phys. Rev. B 74, 045118 (2006).
[Crossref]

M. Ghulinyan, J. OtonClaudio, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[Crossref] [PubMed]

Ghulinyan, M.

Z. Gaburro, M. Ghulinyan, L. Pavesi, P. Barthelemy, C. Toninelli, and D. Wiersma, “Dynamics of capillary condensation in bistable optical superlattices,” Phys. Rev. B 77, 115354 (2008).
[Crossref]

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nature Photonics 1, 172–175 (2007).
[Crossref]

M. Ghulinyan, Z. Gaburro, D. S. Wiersma, and L. Pavesi, “Tuning of resonant Zener tunneling by vapor diffusion and condensation in porous optical superlattices,” Phys. Rev. B 74, 045118 (2006).
[Crossref]

M. Ghulinyan, J. OtonClaudio, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[Crossref] [PubMed]

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[Crossref]

Gil, B.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
[Crossref] [PubMed]

Herrera, M. R.

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Phothonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

Kang, X.

X. Kang and Z. Wang, “Optical Bloch oscillation and resonant Zener tunneling in one-dimensional quasi-period structures containing single negative materials,” Opt. Commun. 282, 355–359 (2009).
[Crossref]

Kavokin, A.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
[Crossref] [PubMed]

G. Malpuech, A. Kavokin, G. Panzarini, and A. DiCarlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
[Crossref]

A. Kavokin and G. Malpuech, “Photonic Bloch oscillations in laterally confined Bragg mirrors,” Phys. Rev. B 61, 4413–4416 (2000).
[Crossref]

Khardani, M.

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Stat. Sol. (c) 4, 1986–1990 (2007).
[Crossref]

Koda, T.

R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001).
[Crossref]

Liang, W.-Y.

T.-B. Wang, C.-P. Yin, W.-Y. Liang, and H.-Z. Wang, “Bloch oscillations in one-dimensional photonic crystal coupled microcavity composed of single-negative materials,” Phys. Lett. A 373, 4197–4200 (2009).
[Crossref]

Lousse, V.

V. Lousse and S. Fan, “Tunable terahertz Bloch oscillations in chirped photonic crystals,” Phys. Rev. B 72, 075119 (2005).
[Crossref]

Lu, H.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003)
[Crossref]

Malpuech, G.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
[Crossref] [PubMed]

G. Malpuech, A. Kavokin, G. Panzarini, and A. DiCarlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
[Crossref]

A. Kavokin and G. Malpuech, “Photonic Bloch oscillations in laterally confined Bragg mirrors,” Phys. Rev. B 61, 4413–4416 (2000).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Phothonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

Méndez-Blas, A.

J. O. Estevez, J. Arriaga, A. Méndez-Blas, E. Reyes-Ayona, J. Escorcia, and V. Agarwal, “Demonstration of photon Bloch oscillations and Wannier-Stark ladders in dual-periodical multilayer structures based on porous silicon,” Nano. Res. Lett. 7, 413 (2012).
[Crossref]

K. Pérez, J. O. Estevez, A. Méndez-Blas, and J. Arriaga, “Localized defect modes in dual-periodical multilayer structures based on porous silicon,” J. Opt. Soc. Am. B 29, 538–542 (2012).
[Crossref]

Méndez-Blas, Antonio

Karina S. Pérez, J. Octavio Estevez, Antonio Méndez-Blas, Jesús Arriaga, Gabriela Palestino, and Miguel E. Mora-Ramos, “Tunable resonance transmission modes in hybrid heterostructures based on porous silicon,” Nano. Res. Lett. 7, 392 (2012).
[Crossref]

Ming, N. B.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003)
[Crossref]

Monsivais, G.

G. Monsivais, M. del Castillo-Mussot, and F. Claro, “Stark-Ladder resonances in the propagation of electromagnetic waves,” Phys. Rev. Lett. 64, 1433–1436 (1990).
[Crossref] [PubMed]

Mora-Ramos, Miguel E.

Karina S. Pérez, J. Octavio Estevez, Antonio Méndez-Blas, Jesús Arriaga, Gabriela Palestino, and Miguel E. Mora-Ramos, “Tunable resonance transmission modes in hybrid heterostructures based on porous silicon,” Nano. Res. Lett. 7, 392 (2012).
[Crossref]

Ohtaka, K.

R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001).
[Crossref]

Oton, C. J.

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[Crossref]

OtonClaudio, J.

M. Ghulinyan, J. OtonClaudio, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[Crossref] [PubMed]

Palestino, Gabriela

Karina S. Pérez, J. Octavio Estevez, Antonio Méndez-Blas, Jesús Arriaga, Gabriela Palestino, and Miguel E. Mora-Ramos, “Tunable resonance transmission modes in hybrid heterostructures based on porous silicon,” Nano. Res. Lett. 7, 392 (2012).
[Crossref]

Panzarini, G.

G. Malpuech, A. Kavokin, G. Panzarini, and A. DiCarlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
[Crossref]

Pavesi, L.

Z. Gaburro, M. Ghulinyan, L. Pavesi, P. Barthelemy, C. Toninelli, and D. Wiersma, “Dynamics of capillary condensation in bistable optical superlattices,” Phys. Rev. B 77, 115354 (2008).
[Crossref]

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nature Photonics 1, 172–175 (2007).
[Crossref]

M. Ghulinyan, Z. Gaburro, D. S. Wiersma, and L. Pavesi, “Tuning of resonant Zener tunneling by vapor diffusion and condensation in porous optical superlattices,” Phys. Rev. B 74, 045118 (2006).
[Crossref]

M. Ghulinyan, J. OtonClaudio, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[Crossref] [PubMed]

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[Crossref]

Pérez, K.

Pérez, Karina S.

Karina S. Pérez, J. Octavio Estevez, Antonio Méndez-Blas, Jesús Arriaga, Gabriela Palestino, and Miguel E. Mora-Ramos, “Tunable resonance transmission modes in hybrid heterostructures based on porous silicon,” Nano. Res. Lett. 7, 392 (2012).
[Crossref]

Qin, Q.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003)
[Crossref]

Reyes-Ayona, E.

J. O. Estevez, J. Arriaga, E. Reyes-Ayona, and V. Agarwal, “Photonic Bloch oscillations and Zener tunneling in dual-periodical multilayers made of porous silicon: effect of angle of incidence,” JNanoR 28, 83–90 (2014).
[Crossref]

J. O. Estevez, J. Arriaga, A. Méndez-Blas, E. Reyes-Ayona, J. Escorcia, and V. Agarwal, “Demonstration of photon Bloch oscillations and Wannier-Stark ladders in dual-periodical multilayer structures based on porous silicon,” Nano. Res. Lett. 7, 413 (2012).
[Crossref]

Sancho-Parramon, J.

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-purpose software for optical characterization of thin films: specif features for microelectonic applications,” Solid-State Electronics 45, 703–709 (2001).
[Crossref]

Sapienza, R.

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[Crossref]

Scalbert, D.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
[Crossref] [PubMed]

Shimada, R.

R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001).
[Crossref]

Toninelli, C.

Z. Gaburro, M. Ghulinyan, L. Pavesi, P. Barthelemy, C. Toninelli, and D. Wiersma, “Dynamics of capillary condensation in bistable optical superlattices,” Phys. Rev. B 77, 115354 (2008).
[Crossref]

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nature Photonics 1, 172–175 (2007).
[Crossref]

M. Ghulinyan, J. OtonClaudio, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[Crossref] [PubMed]

Ueta, T.

R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001).
[Crossref]

Vladimirova, M.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
[Crossref] [PubMed]

Wang, H.-Z.

T.-B. Wang, C.-P. Yin, W.-Y. Liang, and H.-Z. Wang, “Bloch oscillations in one-dimensional photonic crystal coupled microcavity composed of single-negative materials,” Phys. Lett. A 373, 4197–4200 (2009).
[Crossref]

Wang, T.-B.

T.-B. Wang, C.-P. Yin, W.-Y. Liang, and H.-Z. Wang, “Bloch oscillations in one-dimensional photonic crystal coupled microcavity composed of single-negative materials,” Phys. Lett. A 373, 4197–4200 (2009).
[Crossref]

Wang, Z.

X. Kang and Z. Wang, “Optical Bloch oscillation and resonant Zener tunneling in one-dimensional quasi-period structures containing single negative materials,” Opt. Commun. 282, 355–359 (2009).
[Crossref]

Wiersma, D.

Z. Gaburro, M. Ghulinyan, L. Pavesi, P. Barthelemy, C. Toninelli, and D. Wiersma, “Dynamics of capillary condensation in bistable optical superlattices,” Phys. Rev. B 77, 115354 (2008).
[Crossref]

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[Crossref]

Wiersma, D. S.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nature Photonics 1, 172–175 (2007).
[Crossref]

M. Ghulinyan, Z. Gaburro, D. S. Wiersma, and L. Pavesi, “Tuning of resonant Zener tunneling by vapor diffusion and condensation in porous optical superlattices,” Phys. Rev. B 74, 045118 (2006).
[Crossref]

M. Ghulinyan, J. OtonClaudio, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[Crossref] [PubMed]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Phothonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-stated physic and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yamilov, A. G.

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley VCH, 1998).

Yin, C.-P.

T.-B. Wang, C.-P. Yin, W.-Y. Liang, and H.-Z. Wang, “Bloch oscillations in one-dimensional photonic crystal coupled microcavity composed of single-negative materials,” Phys. Lett. A 373, 4197–4200 (2009).
[Crossref]

Yuan, C. S.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003)
[Crossref]

Zamfirescu, M.

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
[Crossref] [PubMed]

Zhu, S. N.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003)
[Crossref]

Zhu, Y. Y.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003)
[Crossref]

Appl. Phys. Lett. (1)

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003)
[Crossref]

J. Appl. Phys. (1)

R. Shimada, T. Koda, T. Ueta, and K. Ohtaka, “Strong localization of Bloch photons in dual-periodic dielectric multilayer structures,” J. Appl. Phys. 90, 3905–3909 (2001).
[Crossref]

J. Opt. Soc. Am. B (2)

JNanoR (1)

J. O. Estevez, J. Arriaga, E. Reyes-Ayona, and V. Agarwal, “Photonic Bloch oscillations and Zener tunneling in dual-periodical multilayers made of porous silicon: effect of angle of incidence,” JNanoR 28, 83–90 (2014).
[Crossref]

Nano. Res. Lett. (2)

J. O. Estevez, J. Arriaga, A. Méndez-Blas, E. Reyes-Ayona, J. Escorcia, and V. Agarwal, “Demonstration of photon Bloch oscillations and Wannier-Stark ladders in dual-periodical multilayer structures based on porous silicon,” Nano. Res. Lett. 7, 413 (2012).
[Crossref]

Karina S. Pérez, J. Octavio Estevez, Antonio Méndez-Blas, Jesús Arriaga, Gabriela Palestino, and Miguel E. Mora-Ramos, “Tunable resonance transmission modes in hybrid heterostructures based on porous silicon,” Nano. Res. Lett. 7, 392 (2012).
[Crossref]

Nature Photonics (1)

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nature Photonics 1, 172–175 (2007).
[Crossref]

Opt. Commun. (1)

X. Kang and Z. Wang, “Optical Bloch oscillation and resonant Zener tunneling in one-dimensional quasi-period structures containing single negative materials,” Opt. Commun. 282, 355–359 (2009).
[Crossref]

Opt. Mater. (1)

A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, and S. Szatmári, eds. “Optical properties of porous silicon. Part III: Comparision of experimental and theoretical results,” Opt. Mater. 28, 506–513 (2006).
[Crossref]

Phys. Lett. A (1)

T.-B. Wang, C.-P. Yin, W.-Y. Liang, and H.-Z. Wang, “Bloch oscillations in one-dimensional photonic crystal coupled microcavity composed of single-negative materials,” Phys. Lett. A 373, 4197–4200 (2009).
[Crossref]

Phys. Rev. B (5)

V. Lousse and S. Fan, “Tunable terahertz Bloch oscillations in chirped photonic crystals,” Phys. Rev. B 72, 075119 (2005).
[Crossref]

A. Kavokin and G. Malpuech, “Photonic Bloch oscillations in laterally confined Bragg mirrors,” Phys. Rev. B 61, 4413–4416 (2000).
[Crossref]

G. Malpuech, A. Kavokin, G. Panzarini, and A. DiCarlo, “Theory of photon Bloch oscillations in photonic crystals,” Phys. Rev. B 63, 035108 (2001).
[Crossref]

Z. Gaburro, M. Ghulinyan, L. Pavesi, P. Barthelemy, C. Toninelli, and D. Wiersma, “Dynamics of capillary condensation in bistable optical superlattices,” Phys. Rev. B 77, 115354 (2008).
[Crossref]

M. Ghulinyan, Z. Gaburro, D. S. Wiersma, and L. Pavesi, “Tuning of resonant Zener tunneling by vapor diffusion and condensation in porous optical superlattices,” Phys. Rev. B 74, 045118 (2006).
[Crossref]

Phys. Rev. Lett. (5)

G. Monsivais, M. del Castillo-Mussot, and F. Claro, “Stark-Ladder resonances in the propagation of electromagnetic waves,” Phys. Rev. Lett. 64, 1433–1436 (1990).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-stated physic and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic Bloch oscillations,” Phys. Rev. Lett. 91, 263902 (2003).
[Crossref]

V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, “Photon Bloch oscillations in porous silicon optical superlattices,” Phys. Rev. Lett. 92, 097401 (2004).
[Crossref] [PubMed]

M. Ghulinyan, J. OtonClaudio, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma, “Zener tunneling of light waves in an optical superlattice,” Phys. Rev. Lett. 94, 127401 (2005).
[Crossref] [PubMed]

Phys. Stat. Sol. (c) (1)

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment,” Phys. Stat. Sol. (c) 4, 1986–1990 (2007).
[Crossref]

Solid-State Electronics (1)

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, “A general-purpose software for optical characterization of thin films: specif features for microelectonic applications,” Solid-State Electronics 45, 703–709 (2001).
[Crossref]

Z Phys (1)

F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Z Phys,  52, 555 (1928);;C. Zener, ”A theory of electrical breakdown of solid,” Dielectrics Proc R Soc,  145, London A, 523 (1934).
[Crossref]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Phothonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

P. Yeh, Optical Waves in Layered Media (Wiley VCH, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic representation of a typical 1D dual-periodic structure.
Fig. 2
Fig. 2 HRSEM of (A3B6)5 structure with a △d=20% gradient gradient in the physical thickness. Dark and clear layers correspond to high and low porosities, respectively. The inset (2.01×1.58 μm2) shows an amplified view of the A3 substructure.
Fig. 3
Fig. 3 (a) Simulated electric field intensity distribution of TM modes in (A3B6)5 structure with no gradient in physical thickness, i.e. △d = 0% (Flat miniband situation). A change of color from dark to bright corresponds to the increase in the light intensity. (b) with △d = 10% (optical WSLs). (c) △d = 20%, resonant Zener tunneling (ZT). The calculated reflectivity spectra are shown in the right panels. Above each panel the (A3B6)5 sequence is schematically shown.
Fig. 4
Fig. 4 (a) (Top) the amplitude of reflected signal as a function of time. (Down) The optical single resonance: the trace of a pulse which is centered at the first peak of the second MBs (△d = 0%); (b) (Top) the amplitude of reflected signal as a function of time; (down) The optical Bloch oscillation: the trace of a pulse which is centered at the third peak of the second WSL of the structure with △d = 10%; (c) (Top) The amplitude of reflected signal as a function of time; (down) The optical Zener tunneling (△d = 20%): the trace of a pulse which is centered at the peak where Zener tunneling occurs. In all cases, the pulse impinges onto the structure from left with pulse width δ =30 nm, respectively.
Fig. 5
Fig. 5 Measured spectra of the DP multilayer structures: (a) flat band situation △d = 0%. (b) △d = 10%. (c) △d = 18%. (d) Z(A3B6)5 structure with a linear gradient in layers’ thicknesses (△d = 20%). Resonant Zener tunneling is observed as an enhanced transmission peak in the center of the minigap.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

( E j μ + E j μ ) = M μ ( E j + 1 μ + E j + 1 μ )
M j μ = ( cos ( ϕ j ) i s i n ( ϕ j ) / q j μ i q j μ sin ( ϕ j ) cos ( ϕ j ) )
E ( z , ω ) = { 1 + r ( ω ) } M 11 k + γ 0 { 1 r ( ω ) } M 12 k
r ( t ) = 1 2 π + g ( ω ) r ( ω ) e i ω t d ω
E ( z , t ) = 1 2 π + E ( ω , z ) g ( ω ) e i ω t d ω
g ( ω ) = h ¯ π δ exp [ ( h ¯ ω E 0 δ ) 2 ]
( 1 P ) ( ε S i ε P S i ε S i + 2 ε P S i ) + P ( 1 ε P S i 1 + 2 ε P S i ) = 0
ε P S i = 1 4 { ( 2 ε S i 1 ) + 3 P ( 1 ε S i ) + [ ( ( 2 ε S i 1 ) + 3 P ( 1 ε S i ) ) 2 + 8 ε S i ] 1 / 2 }

Metrics