Abstract

Conventional (1015 nm) and Raman (1055 nm) dissipative solitons generated in an all-fiber Yb laser are mixed in an external photonic crystal fiber (PCF) at pulse energy of up to 4 nJ at the input. It has been found that red-shifted ~20 ps pulses with energy up to 1 nJ are generated in the parametric process. Their peak wavelength is tunable from 1084 to 1102 nm by means of the delay variation between the input pulses. At that, the parametric pulses are shown to be coherent with the input ones and compressible to ~2 ps that is useful in applications. The performed modeling explains the main features of generated pulses.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Feedback-controlled Raman dissipative solitons in a fiber laser

Denis S. Kharenko, Anastasia E. Bednyakova, Evgeniy V. Podivilov, Mikhail P. Fedoruk, Alexander Apolonski, and Sergey A. Babin
Opt. Express 23(2) 1857-1862 (2015)

Generation of Raman dissipative solitons near 1.3 microns in a phosphosilicate-fiber cavity

Denis S. Kharenko, Vlad D. Efremov, Ekaterina A. Evmenova, and Sergey A. Babin
Opt. Express 26(12) 15084-15089 (2018)

Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications

Thomas Gottschall, Tobias Meyer, Michael Schmitt, Jürgen Popp, Jens Limpert, and Andreas Tünnermann
Opt. Express 23(18) 23968-23977 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92(3), 409–417 (2008).
    [Crossref]
  2. G. Whitenett, G. Stewart, H. Yu, and B. Culshaw, “Investigation of a tuneable mode-locked fiber laser for application to multipoint gas spectroscopy,” J. Lightwave Technol. 22(3), 813–819 (2004).
    [Crossref]
  3. C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
    [Crossref] [PubMed]
  4. E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 15(8), 4848–4856 (2007).
    [Crossref] [PubMed]
  5. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. Sunney Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37(10), 1652–1654 (2012).
    [Crossref] [PubMed]
  6. X. Wei, A. K. S. Lau, Y. Xu, C. Zhang, A. Mussot, A. Kudlinski, K. K. Tsia, and K. K. Y. Wong, “Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 1.0 μm,” Opt. Lett. 39(20), 5989–5992 (2014).
    [Crossref] [PubMed]
  7. T. N. Nguyen, K. Kieu, A. V. Maslov, M. Miyawaki, and N. Peyghambarian, “Normal dispersion femtosecond fiber optical parametric oscillator,” Opt. Lett. 38(18), 3616–3619 (2013).
    [Crossref] [PubMed]
  8. E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(20), 4154–4157 (2013).
    [Crossref] [PubMed]
  9. T. Gottschall, T. Meyer, M. Baumgartl, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering (CARS) microscopy,” Opt. Express 22(18), 21921–21928 (2014).
    [Crossref] [PubMed]
  10. K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
    [Crossref]
  11. M. E. V. Pedersen, J. Cheng, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Higher-order-mode fiber optimized for energetic soliton propagation,” Opt. Lett. 37(16), 3459–3461 (2012).
    [Crossref] [PubMed]
  12. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
    [Crossref]
  13. Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  14. M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
    [Crossref] [PubMed]
  15. C. Aguergaray, A. Runge, M. Erkintalo, and N. G. R. Broderick, “Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability,” Opt. Lett. 38(15), 2644–2646 (2013).
    [Crossref] [PubMed]
  16. D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator,” Opt. Lett. 37(19), 4104–4106 (2012).
    [Crossref] [PubMed]
  17. A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express 21(18), 20556–20564 (2013).
    [PubMed]
  18. S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
    [Crossref] [PubMed]
  19. D. S. Kharenko, A. E. Bednyakova, E. V. Podivilov, M. P. Fedoruk, A. Apolonski, and S. A. Babin, “Feedback-controlled Raman dissipative solitons in a fiber laser,” Opt. Express 23(2), 1857–1862 (2015).
    [Crossref] [PubMed]
  20. K. Özgören and F. O. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35(8), 1296–1298 (2010).
    [Crossref] [PubMed]
  21. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser,” J. Opt. Soc. Am. B 29(8), 1959–1967 (2012).
    [Crossref]
  22. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).
  23. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

2015 (1)

2014 (3)

2013 (5)

2012 (6)

2011 (1)

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

2010 (1)

2008 (2)

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92(3), 409–417 (2008).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

2007 (1)

2004 (1)

Aguergaray, C.

Akhmediev, N.

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Andresen, E. R.

Apolonski, A.

Apolonski, A. A.

Babin, S. A.

Baumgartl, M.

Bednyakova, A. E.

Broderick, N. G. R.

Charan, K.

Cheng, J.

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Culshaw, B.

Dietzek, B.

Diskin, G.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92(3), 409–417 (2008).
[Crossref]

Erkintalo, M.

Fedoruk, M. P.

Fried, A.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92(3), 409–417 (2008).
[Crossref]

Fu, D.

Gottschall, T.

Grelu, Ph.

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Grüner-Nielsen, L.

Herda, R.

Holtom, G. R.

Ilday, F. O.

Jakobsen, D.

Ji, M.

Kablukov, S. I.

Kalashnikov, V. L.

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express 21(18), 20556–20564 (2013).
[PubMed]

Keiding, S. R.

Kharenko, D. S.

Kieu, K.

Kong, L.

Kudlinski, A.

Lamb, E. S.

Lau, A. K. S.

Lefrancois, S.

Limpert, J.

Maslov, A. V.

Meyer, T.

Miyawaki, M.

Mussot, A.

Nguyen, T. N.

Nielsen, C. K.

Özgören, K.

Pedersen, M. E. V.

Peyghambarian, N.

Podivilov, E. V.

Podolske, J.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92(3), 409–417 (2008).
[Crossref]

Popp, J.

Rana, M.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92(3), 409–417 (2008).
[Crossref]

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Richter, D.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92(3), 409–417 (2008).
[Crossref]

Runge, A.

Sachse, G.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92(3), 409–417 (2008).
[Crossref]

Schneider, P.

Slate, T.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92(3), 409–417 (2008).
[Crossref]

Stewart, G.

Sunney Xie, X.

Thøgersen, J.

Tsia, K. K.

Tünnermann, A.

Wadsworth, W. J.

Walega, J. G.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92(3), 409–417 (2008).
[Crossref]

Wang, K.

M. E. V. Pedersen, J. Cheng, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Higher-order-mode fiber optimized for energetic soliton propagation,” Opt. Lett. 37(16), 3459–3461 (2012).
[Crossref] [PubMed]

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

Wei, X.

Weibring, P.

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92(3), 409–417 (2008).
[Crossref]

Whitenett, G.

Wise, F. W.

Wong, K. K. Y.

Xie, X. S.

Xu, C.

C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[Crossref] [PubMed]

M. E. V. Pedersen, J. Cheng, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Higher-order-mode fiber optimized for energetic soliton propagation,” Opt. Lett. 37(16), 3459–3461 (2012).
[Crossref] [PubMed]

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

Xu, Y.

Yu, H.

Zach, A.

Zhang, C.

Zlobina, E. A.

Appl. Phys. B (1)

A. Fried, G. Diskin, P. Weibring, D. Richter, J. G. Walega, G. Sachse, T. Slate, M. Rana, and J. Podolske, “Tunable infrared laser instruments for airborne atmospheric studies,” Appl. Phys. B 92(3), 409–417 (2008).
[Crossref]

Appl. Phys. Lett. (1)

K. Wang and C. Xu, “Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy,” Appl. Phys. Lett. 99(7), 071112 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7(11), 875–882 (2013).
[Crossref] [PubMed]

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (8)

K. Özgören and F. O. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35(8), 1296–1298 (2010).
[Crossref] [PubMed]

S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. Sunney Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37(10), 1652–1654 (2012).
[Crossref] [PubMed]

X. Wei, A. K. S. Lau, Y. Xu, C. Zhang, A. Mussot, A. Kudlinski, K. K. Tsia, and K. K. Y. Wong, “Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 1.0 μm,” Opt. Lett. 39(20), 5989–5992 (2014).
[Crossref] [PubMed]

T. N. Nguyen, K. Kieu, A. V. Maslov, M. Miyawaki, and N. Peyghambarian, “Normal dispersion femtosecond fiber optical parametric oscillator,” Opt. Lett. 38(18), 3616–3619 (2013).
[Crossref] [PubMed]

E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(20), 4154–4157 (2013).
[Crossref] [PubMed]

M. E. V. Pedersen, J. Cheng, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, and D. Jakobsen, “Higher-order-mode fiber optimized for energetic soliton propagation,” Opt. Lett. 37(16), 3459–3461 (2012).
[Crossref] [PubMed]

C. Aguergaray, A. Runge, M. Erkintalo, and N. G. R. Broderick, “Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability,” Opt. Lett. 38(15), 2644–2646 (2013).
[Crossref] [PubMed]

D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator,” Opt. Lett. 37(19), 4104–4106 (2012).
[Crossref] [PubMed]

Phys. Rev. A (1)

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Other (2)

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup: VDS - variable delay line, PWDM - polarization wavelength division multiplexer (Lyot filter), PBS – polarization beam splitter, PCF - photonic crystal fiber, FROG - frequency-resolved optical gating system, OSA - optical spectrum analyzer.
Fig. 2
Fig. 2 (a) Output spectra depending on the time delay between pump (RDS at 1055 nm) and signal (DS at 1015 nm) pulses. (b) Parametric phase matching diagrams: theory (dashed line), experiment (points), DS wavelength domain in the experiment (solid line).
Fig. 3
Fig. 3 (a) Calculated temporal wavelength distribution of signal (dotted line), pump (dashed line) and idler (solid line) pulses at time delay Δτ = 15 ps. Inset: parametric conversion efficiency at the overlap area. (b) Calculated parametric conversion efficiency vs. time delay.
Fig. 4
Fig. 4 The FROG-traces and the ACF of initial (a) and compressed (b) parametric pulse at 1096 nm for 4 nJ pump pulse energy. Inset: The cross-correlation function between RDS and initial parametric pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω i =2 ω p ω s ,
Δβ=( β 4 /12) Ω 4 +( β 3 ( ω p ω 0 )+( β 4 /2) ( ω p ω 0 ) 2 ) Ω 2 +2γ P p ,
η c = (γ P p /g) 2 sinh 2 (gL),

Metrics