Abstract

Retrieving correct phase information from an in-line hologram is difficult as the object wave field and the diffractions of the zero order and the conjugate object term overlap. The existing iterative numerical phase retrieval methods are slow, especially in the case of high Fresnel number systems. Conversely, the reconstruction of the object wave field from an off-axis hologram is simple, but due to the applied spatial frequency filtering the achievable resolution is confined. Here, a new, high-speed algorithm is introduced that efficiently incorporates the data of an auxiliary off-axis hologram in the phase retrieval of the corresponding in-line hologram. The efficiency of the introduced combined phase retrieval method is demonstrated by simulated and measured holograms.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Complex-wave retrieval from a single off-axis hologram

Michael Liebling, Thierry Blu, and Michael Unser
J. Opt. Soc. Am. A 21(3) 367-377 (2004)

In-line hologram segmentation for volumetric samples

László Orzó, Zoltán Göröcs, András Fehér, and Szabolcs Tőkés
Appl. Opt. 52(1) A45-A55 (2013)

Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing

Bei Sha, Xuan Liu, Xiao-Lu Ge, and Cheng-Shan Guo
Opt. Express 22(19) 23066-23072 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
    [Crossref] [PubMed]
  2. S. Yeom, I. Moon, and B. Javidi, “Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms,” Proceedings of the IEEE 94, 550–566 (2006).
    [Crossref]
  3. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
    [Crossref] [PubMed]
  4. J. Garcia-Sucerquia, W. Xu, S. Jericho, M. Jericho, and H. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik-International Journal for Light and Electron Optics 119, 419–423 (2008).
    [Crossref]
  5. P. Hariharan, Optical Holography: Principles, Techniques, and Applications, 20 (Cambridge University, 1996).
    [Crossref]
  6. W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
    [Crossref] [PubMed]
  7. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref] [PubMed]
  8. M. Kim, Digital Holographic Microscopy (Springer, 2011).
    [Crossref]
  9. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1128 (1962).
    [Crossref]
  10. P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light: Science & Applications 3, e151 (2014).
    [Crossref]
  11. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer Verlag, 2005).
  12. M. Brignone and M. Piana, “The use of constraints for solving inverse scattering problems: physical optics and the linear sampling method,” Inverse Problems 21, 207 (2005).
    [Crossref]
  13. J. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [Crossref] [PubMed]
  14. G.-z. Yang, B.-z. Dong, B.-y. Gu, J.-y. Zhuang, and O. K. Ersoy, “Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison,” Appl. Opt. 33, 209–218 (1994).
    [Crossref] [PubMed]
  15. G. Koren, D. Joyeux, and F. Polack, “Twin-image elimination in in-line holography of finite-support complex objects,” Opt. Lett. 16, 1979–1981 (1991).
    [Crossref] [PubMed]
  16. O. Mudanyali, D. Tseng, C. Oh, S. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417 (2010).
    [Crossref] [PubMed]
  17. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
    [Crossref]
  18. M. Guizar-Sicairos and J. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16, 7264–7278 (2008).
    [Crossref] [PubMed]
  19. Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11, 3234–3241 (2003).
    [Crossref] [PubMed]
  20. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
    [Crossref]
  21. A. Bourquard, N. Pavillon, E. Bostan, C. Depeursinge, and M. Unser, “A practical inverse-problem approach to digital holographic reconstruction,” Opt. Express 21, 3417–3433 (2013).
    [Crossref] [PubMed]
  22. S. Sotthivirat and J. Fessler, “Penalized-likelihood image reconstruction for digital holography,” J. Opt. Soc. Am. A 21, 737–750 (2004).
    [Crossref]
  23. J. Fienup and A. Kowalczyk, “Phase retrieval for a complex-valued object by using a low-resolution image,” J. Opt. Soc. Am. A 7, 450–458 (1990).
    [Crossref]
  24. C. Ozsoy-Keskinbora, C. Boothroyd, R. Dunin-Borkowski, P. van Aken, and C. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4, 7020 (2014).
    [Crossref] [PubMed]
  25. R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  26. J. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).
  27. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).
    [Crossref] [PubMed]
  28. J. Fienup and C. Wackerman, “Phase-retrieval stagnation problems and solutions,” J. Opt. Soc. Am. A 3, 1897–1907 (1986).
    [Crossref]
  29. L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).
  30. A. Stern and B. Javidi, “Space-bandwidth conditions for efficient phase-shifting digital holographic microscopy,” J. Opt. Soc. Am. A 25, 736–741 (2008).
    [Crossref]
  31. T. Crimmins, J. Fienup, and B. Thelen, “Improved bounds on object support from autocorrelation support and application to phase retrieval,” J. Opt. Soc. Am. A 7, 3–13 (1990).
    [Crossref]
  32. S. Raupach, “Observation of interference patterns in reconstructed digital holograms of atmospheric ice crystals,” Journal of Atmospheric and Oceanic Technology 26, 2691–2693 (2009).
    [Crossref]
  33. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [Crossref]
  34. M. Z. Kiss, B. J. Nagy, P. Lakatos, Z. Göröcs, S. Tőkés, B. Wittner, and L. Orzó, “Special multicolor illumination and numerical tilt correction in volumetric digital holographic microscopy,” Opt. Express 22, 7559–7573 (2014).
    [Crossref] [PubMed]
  35. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
    [Crossref] [PubMed]

2014 (3)

P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light: Science & Applications 3, e151 (2014).
[Crossref]

C. Ozsoy-Keskinbora, C. Boothroyd, R. Dunin-Borkowski, P. van Aken, and C. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4, 7020 (2014).
[Crossref] [PubMed]

M. Z. Kiss, B. J. Nagy, P. Lakatos, Z. Göröcs, S. Tőkés, B. Wittner, and L. Orzó, “Special multicolor illumination and numerical tilt correction in volumetric digital holographic microscopy,” Opt. Express 22, 7559–7573 (2014).
[Crossref] [PubMed]

2013 (1)

2010 (2)

W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417 (2010).
[Crossref] [PubMed]

2009 (2)

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).
[Crossref] [PubMed]

S. Raupach, “Observation of interference patterns in reconstructed digital holograms of atmospheric ice crystals,” Journal of Atmospheric and Oceanic Technology 26, 2691–2693 (2009).
[Crossref]

2008 (4)

A. Stern and B. Javidi, “Space-bandwidth conditions for efficient phase-shifting digital holographic microscopy,” J. Opt. Soc. Am. A 25, 736–741 (2008).
[Crossref]

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

M. Guizar-Sicairos and J. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16, 7264–7278 (2008).
[Crossref] [PubMed]

J. Garcia-Sucerquia, W. Xu, S. Jericho, M. Jericho, and H. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik-International Journal for Light and Electron Optics 119, 419–423 (2008).
[Crossref]

2006 (3)

2005 (3)

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
[Crossref] [PubMed]

M. Brignone and M. Piana, “The use of constraints for solving inverse scattering problems: physical optics and the linear sampling method,” Inverse Problems 21, 207 (2005).
[Crossref]

2004 (1)

2003 (1)

2001 (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref] [PubMed]

2000 (1)

1994 (1)

1991 (1)

1990 (2)

1986 (1)

1982 (1)

1972 (1)

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

1962 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Aspert, N.

Bishara, W.

W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417 (2010).
[Crossref] [PubMed]

Boothroyd, C.

C. Ozsoy-Keskinbora, C. Boothroyd, R. Dunin-Borkowski, P. van Aken, and C. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4, 7020 (2014).
[Crossref] [PubMed]

Bostan, E.

Bourquard, A.

Brignone, M.

M. Brignone and M. Piana, “The use of constraints for solving inverse scattering problems: physical optics and the linear sampling method,” Inverse Problems 21, 207 (2005).
[Crossref]

Charrière, F.

Colomb, T.

Coskun, A.

Crimmins, T.

Cuche, E.

Denis, L.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

Depeursinge, C.

Dong, B.-z.

Ducottet, C.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

Dunin-Borkowski, R.

C. Ozsoy-Keskinbora, C. Boothroyd, R. Dunin-Borkowski, P. van Aken, and C. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4, 7020 (2014).
[Crossref] [PubMed]

Emery, Y.

Ersoy, O. K.

Fessler, J.

Fienup, J.

Fournel, T.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

Fournier, C.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

García, J.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]

García-Martínez, P.

Garcia-Sucerquia, J.

J. Garcia-Sucerquia, W. Xu, S. Jericho, M. Jericho, and H. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik-International Journal for Light and Electron Optics 119, 419–423 (2008).
[Crossref]

Gerchberg, R.

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Girshovitz, P.

P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light: Science & Applications 3, e151 (2014).
[Crossref]

Goodman, J.

J. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

Göröcs, Z.

Gu, B.-y.

Guizar-Sicairos, M.

Hariharan, P.

P. Hariharan, Optical Holography: Principles, Techniques, and Applications, 20 (Cambridge University, 1996).
[Crossref]

Isikman, S.

O. Mudanyali, D. Tseng, C. Oh, S. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417 (2010).
[Crossref] [PubMed]

Javidi, B.

A. Stern and B. Javidi, “Space-bandwidth conditions for efficient phase-shifting digital holographic microscopy,” J. Opt. Soc. Am. A 25, 736–741 (2008).
[Crossref]

S. Yeom, I. Moon, and B. Javidi, “Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms,” Proceedings of the IEEE 94, 550–566 (2006).
[Crossref]

Jericho, M.

J. Garcia-Sucerquia, W. Xu, S. Jericho, M. Jericho, and H. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik-International Journal for Light and Electron Optics 119, 419–423 (2008).
[Crossref]

Jericho, M. H.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref] [PubMed]

Jericho, S.

J. Garcia-Sucerquia, W. Xu, S. Jericho, M. Jericho, and H. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik-International Journal for Light and Electron Optics 119, 419–423 (2008).
[Crossref]

Joyeux, D.

Jueptner, W.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer Verlag, 2005).

Khademhosseini, B.

O. Mudanyali, D. Tseng, C. Oh, S. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417 (2010).
[Crossref] [PubMed]

Kim, M.

M. Kim, Digital Holographic Microscopy (Springer, 2011).
[Crossref]

Kiss, M. Z.

Koch, C.

C. Ozsoy-Keskinbora, C. Boothroyd, R. Dunin-Borkowski, P. van Aken, and C. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4, 7020 (2014).
[Crossref] [PubMed]

Koren, G.

Kowalczyk, A.

Kreuzer, H.

J. Garcia-Sucerquia, W. Xu, S. Jericho, M. Jericho, and H. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik-International Journal for Light and Electron Optics 119, 419–423 (2008).
[Crossref]

Kreuzer, H. J.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref] [PubMed]

Kühn, J.

Lakatos, P.

Leith, E. N.

Magistretti, P.

Marquet, P.

Matsushima, K.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref] [PubMed]

Mico, V.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]

Moon, I.

S. Yeom, I. Moon, and B. Javidi, “Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms,” Proceedings of the IEEE 94, 550–566 (2006).
[Crossref]

Mudanyali, O.

O. Mudanyali, D. Tseng, C. Oh, S. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417 (2010).
[Crossref] [PubMed]

Nagy, B. J.

Oh, C.

O. Mudanyali, D. Tseng, C. Oh, S. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417 (2010).
[Crossref] [PubMed]

Orzó, L.

Osten, W.

Ozcan, A.

W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417 (2010).
[Crossref] [PubMed]

Ozsoy-Keskinbora, C.

C. Ozsoy-Keskinbora, C. Boothroyd, R. Dunin-Borkowski, P. van Aken, and C. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4, 7020 (2014).
[Crossref] [PubMed]

Oztoprak, C.

O. Mudanyali, D. Tseng, C. Oh, S. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417 (2010).
[Crossref] [PubMed]

Pavillon, N.

Pedrini, G.

Piana, M.

M. Brignone and M. Piana, “The use of constraints for solving inverse scattering problems: physical optics and the linear sampling method,” Inverse Problems 21, 207 (2005).
[Crossref]

Polack, F.

Rappaz, B.

Raupach, S.

S. Raupach, “Observation of interference patterns in reconstructed digital holograms of atmospheric ice crystals,” Journal of Atmospheric and Oceanic Technology 26, 2691–2693 (2009).
[Crossref]

Saxton, W.

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Schnars, U.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer Verlag, 2005).

Sencan, I.

O. Mudanyali, D. Tseng, C. Oh, S. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417 (2010).
[Crossref] [PubMed]

Seo, S.

O. Mudanyali, D. Tseng, C. Oh, S. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417 (2010).
[Crossref] [PubMed]

Shaked, N. T.

P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light: Science & Applications 3, e151 (2014).
[Crossref]

Shimobaba, T.

Sotthivirat, S.

Stern, A.

Su, T.

Thelen, B.

Tiziani, H.

Tokés, S.

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417 (2010).
[Crossref] [PubMed]

Unser, M.

Upatnieks, J.

van Aken, P.

C. Ozsoy-Keskinbora, C. Boothroyd, R. Dunin-Borkowski, P. van Aken, and C. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4, 7020 (2014).
[Crossref] [PubMed]

Wackerman, C.

Wittner, B.

Xu, W.

J. Garcia-Sucerquia, W. Xu, S. Jericho, M. Jericho, and H. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik-International Journal for Light and Electron Optics 119, 419–423 (2008).
[Crossref]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref] [PubMed]

Yang, G.-z.

Yeom, S.

S. Yeom, I. Moon, and B. Javidi, “Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms,” Proceedings of the IEEE 94, 550–566 (2006).
[Crossref]

Zalevsky, Z.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]

Zhang, Y.

Zhuang, J.-y.

Appl. Opt. (3)

Inverse Problems (1)

M. Brignone and M. Piana, “The use of constraints for solving inverse scattering problems: physical optics and the linear sampling method,” Inverse Problems 21, 207 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (6)

Journal of Atmospheric and Oceanic Technology (1)

S. Raupach, “Observation of interference patterns in reconstructed digital holograms of atmospheric ice crystals,” Journal of Atmospheric and Oceanic Technology 26, 2691–2693 (2009).
[Crossref]

Lab on a Chip (1)

O. Mudanyali, D. Tseng, C. Oh, S. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417 (2010).
[Crossref] [PubMed]

Light: Science & Applications (1)

P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light: Science & Applications 3, e151 (2014).
[Crossref]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Opt. Commun. (1)

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

Opt. Express (8)

M. Guizar-Sicairos and J. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16, 7264–7278 (2008).
[Crossref] [PubMed]

Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11, 3234–3241 (2003).
[Crossref] [PubMed]

W. Bishara, T. Su, A. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
[Crossref] [PubMed]

M. Z. Kiss, B. J. Nagy, P. Lakatos, Z. Göröcs, S. Tőkés, B. Wittner, and L. Orzó, “Special multicolor illumination and numerical tilt correction in volumetric digital holographic microscopy,” Opt. Express 22, 7559–7573 (2014).
[Crossref] [PubMed]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).
[Crossref] [PubMed]

A. Bourquard, N. Pavillon, E. Bostan, C. Depeursinge, and M. Unser, “A practical inverse-problem approach to digital holographic reconstruction,” Opt. Express 21, 3417–3433 (2013).
[Crossref] [PubMed]

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17, 19662–19673 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Optik (1)

R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Optik-International Journal for Light and Electron Optics (1)

J. Garcia-Sucerquia, W. Xu, S. Jericho, M. Jericho, and H. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik-International Journal for Light and Electron Optics 119, 419–423 (2008).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref] [PubMed]

Proc. SPIE (1)

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

Proceedings of the IEEE (1)

S. Yeom, I. Moon, and B. Javidi, “Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms,” Proceedings of the IEEE 94, 550–566 (2006).
[Crossref]

Sci. Rep. (1)

C. Ozsoy-Keskinbora, C. Boothroyd, R. Dunin-Borkowski, P. van Aken, and C. Koch, “Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity,” Sci. Rep. 4, 7020 (2014).
[Crossref] [PubMed]

Other (4)

J. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

P. Hariharan, Optical Holography: Principles, Techniques, and Applications, 20 (Cambridge University, 1996).
[Crossref]

M. Kim, Digital Holographic Microscopy (Springer, 2011).
[Crossref]

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer Verlag, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 To test the efficiency of the GS phase retrieval algorithm a simulated in-line hologram is generated (b), using a test object that has amplitude and phase modulations (a). The phase retrieval after 25 iterations is shown in (d). During the phase retrieval process, the error of the reconstruction (c) is eliminating in the not supported region (red circle in (d)) swiftly, but remains substantial within it.
Fig. 2
Fig. 2 The reconstruction of an off-axis hologram (a) is based on spatial frequency filtering. The applied filter – denoted by a red circle in the inverted frequency spectrum of the off-axis hologram (b) – limits the reconstruction bandwidth, and eliminates the high frequency details of the reconstruction (c). The inverted absolute error of the reconstruction (d) demonstrates the low pass filtering property of the reconstruction and the biasing effects of the components of the zero order term that overlaps the filtered region (arrows).
Fig. 3
Fig. 3 Using the combined algorithm on a simulated in-line hologram (a) and off-axis hologram (b) we can achieve proper object reconstruction (f) that eliminates the errors of the in-line hologram phase retrieval (d) and provides higher resolution reconstruction than that of the off-axis reconstruction (e). The introduced phase retrieval algorithm swiftly converges (c) and provides order of magnitude better results than the earlier approaches.
Fig. 4
Fig. 4 The speed of the convergence increases if a tighter spatial support is applied in the case of the original Gerchberg-Saxton algorithm (a) and the introduced combined phase retrieval (b).
Fig. 5
Fig. 5 The speed of the convergence depends on the radius of the applied spatial filter of the off-axis reconstruction. For increasing filter size the (b).
Fig. 6
Fig. 6 By the application of a simple experimental setup (c) both the in-line (a) and off-axis (b) holograms of the test objects can be recorded. Using the measured holograms, a rough support estimation (d) and the employed off-axis object term (the applied spatial frequency filter is denoted by a red rectangle in the inverted spectrum of the in-line compensated (Eq. (16)) off-axis hologram, we can achieve reconstruction (i), that eliminates the twin image noise of the in-line hologram reconstruction (g) and provides considerably higher resolution than that of the off-axis reconstruction (h). Furthermore the introduced combined algorithm shows swift convergence (f).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

w i l z = p z { r ( 1 o ) } = r i l o z = a i l z ( x , y ) e i φ i l z ( x , y )
h i l = | w i l | 2 = | r i l o z | 2 = | r i l | 2 r i l o ¯ z r ¯ i l o z + | o z | 2
o i l r = p z { h i l } = 1 o p 2 z { o ¯ } + p z { | o | 2 }
w i l , 0 = h i l = a i l ( x , y ) e i 0
w z = p z { w 0 } = F 1 { F { w 0 } e i k z ( u , v ) z } ,
k z ( u , v ) = { 2 π λ 1 λ u 2 λ v 2 , if ( 1 λ u 2 λ v 2 ) > 0 0 , otherwise .
1 o ˜ n = { p z { w i l , n 1 } if ( x , y ) χ i l B o t h e r w i s e .
w ˜ i l , n = p z { 1 o ˜ n }
w i l , n + 1 = a i l ( x , y ) w ˜ i l , n | w ˜ i l , n |
h o a = | r i l o z + r o a | 2 = h i l r o a ō z r ¯ o a o z + r i l r ¯ o a + | r o a | 2 + r o a r ¯ i l ,
H o a = F { h o a } = F { h i l } + F { | r o a | 2 } + a o a δ ( α o a x u , α o a y v ) F { r ¯ i l o ¯ z } + a o a δ ( u α o a x , v α o a y ) F { r i l o z } .
H o a , o = { 1 a o a H o a ( u , v ) δ ( α o a x u , α o a y v ) if ( u , v ) χ o a , c 0 o t h e r w i s e ,
H o a , o { F { r i l o z } if ( u α o a x , v α o a y ) χ o a , c 0 o t h e r w i s e .
w ˜ i l o a , n = F 1 { { F { r i l o z } if ( u α o a x , v α o a y ) χ o a , c F { w ˜ i l , n } o t h e r w i s e . } .
h ˜ o a = h o a h i l = r o a o ¯ z r ¯ o a o z + r i l r ¯ o a + | r o a | 2 + r o a r ¯ i l .
H ˜ o a , o = { F { r i l o z } if ( u α o a x , v α o a y ) χ o a , c 0 o t h e r w i s e .

Metrics