Abstract

A metal-film subwavelength-grating polarizer with high performance in the terahertz region is presented. The polarizer was obtained by depositing a thin Au film on a resin grating with a triangular cross section duplicated from a metal mold by using the imprinting method. Microstructural parameters were investigated in detail. Measured insertion losses were less than 0.5 dB in the frequency range of 0.5–3 THz, while extinction ratios were 50 dB in the range of 0.5–2.3 THz. The proposed fabrication method is suited to mass production of large-aperture robust polarizers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silver-film subwavelength gratings for polarizers in the terahertz and mid-infrared regions

Kazuo Shiraishi, Shogo Higuchi, Kengo Muraki, and Hidehiko Yoda
Opt. Express 24(18) 20177-20186 (2016)

Infrared polarizer employing multiple metal-film subwavelength gratings

Kazuo Shiraishi and Hidehiko Yoda
Opt. Express 21(12) 13998-14007 (2013)

High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure

Zhe Huang, Edward P. J. Parrott, Hongkyu Park, Hau Ping Chan, and Emma Pickwell-MacPherson
Opt. Lett. 39(4) 793-796 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Hass and M. O’Hara, “Sheet infrared transmission polarizers,” Appl. Opt. 4(8), 1027–1031 (1965).
    [Crossref]
  2. J. P. Auton, “Infrared transmission polarizers by photolithography,” Appl. Opt. 6(6), 1023–1027 (1967).
    [Crossref] [PubMed]
  3. A. E. Costley, K. H. Hursey, G. F. Neill, and J. M. Ward, “Free-standing fine-wire grids: Their manufacture, performance, and use at millimeter and submillimeter wavelengths,” J. Opt. Soc. Am. 67(7), 979–981 (1977).
    [Crossref]
  4. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34(3), 274–276 (2009).
    [Crossref] [PubMed]
  5. J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
    [Crossref] [PubMed]
  6. K. Takano, H. Yokoyama, A. Ichii, I. Morimoto, and M. Hangyo, “Wire-grid polarizer sheet in the terahertz region fabricated by nanoimprint technology,” Opt. Lett. 36(14), 2665–2667 (2011).
    [Crossref] [PubMed]
  7. L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
    [Crossref]
  8. L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
    [Crossref] [PubMed]
  9. A. Partanen, J. Väyrynen, S. Hassinen, H. Tuovinen, J. Mutanen, T. Itkonen, P. Silfsten, P. Pääkkönen, M. Kuittinen, K. Mönkkönen, and T. Venäläinen, “Fabrication of terahertz wire-grid polarizers,” Appl. Opt. 51(35), 8360–8365 (2012).
    [Crossref] [PubMed]
  10. Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett. 25(1), 81–84 (2013).
    [Crossref]
  11. Z. Huang, E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, “High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure,” Opt. Lett. 39(4), 793–796 (2014).
    [PubMed]
  12. in catalogues of TYDEX, J. S. Co., http://www.tydexoptics.com/products/thz_optics/polarizers/ and InfraSpecs Co., http://www.infraspecs.de/index.html .
  13. C. F. Hsieh, Y. C. Lai, R. P. Pan, and C. L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33(11), 1174–1176 (2008).
    [Crossref] [PubMed]
  14. A. Wojdyla and G. Gallot, “Brewster’s angle silicon wafer terahertz linear polarizer,” Opt. Express 19(15), 14099–14107 (2011).
    [PubMed]
  15. D. Polley, A. Ganguly, A. Barman, and R. K. Mitra, “Polarizing effect of aligned nanoparticles in terahertz frequency region,” Opt. Lett. 38(15), 2754–2756 (2013).
    [Crossref] [PubMed]
  16. K. Shiraishi, S. Oyama, and C. S. Tsai, “A polarizer using thin metallic-film subwavelength grating for infrared to terahertz region,” J. Lightwave Technol. 29(5), 670–676 (2011).
    [Crossref]
  17. Optical properties of Tsurupica resin are provided in the database, http://www.riken.jp/THzdatabase/
  18. S. Chou, P. Krauss, and P. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
    [Crossref]
  19. I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(8), 082502 (2012).
    [Crossref]
  20. I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass,” Opt. Lett. 36(19), 3882–3884 (2011).
    [Crossref] [PubMed]
  21. K. Shiraishi, M. Kofuji, Y. Inagawa, H. Yoda, and C. S. Tsai, “Fabrication of thin metallic-film subwavelength-grating polarizers for terahertz region by the imprinting method,” in Tech. Digest, CLEO, (San Jose CA, May 2012), paper JW2A45.
    [Crossref]
  22. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72(10), 1385–1392 (1982).
    [Crossref]
  23. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of Au, Ni, and Pb at submillimeter wavelengths,” Appl. Opt. 26(4), 744–752 (1987).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett. 25(1), 81–84 (2013).
[Crossref]

D. Polley, A. Ganguly, A. Barman, and R. K. Mitra, “Polarizing effect of aligned nanoparticles in terahertz frequency region,” Opt. Lett. 38(15), 2754–2756 (2013).
[Crossref] [PubMed]

2012 (4)

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(8), 082502 (2012).
[Crossref]

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

A. Partanen, J. Väyrynen, S. Hassinen, H. Tuovinen, J. Mutanen, T. Itkonen, P. Silfsten, P. Pääkkönen, M. Kuittinen, K. Mönkkönen, and T. Venäläinen, “Fabrication of terahertz wire-grid polarizers,” Appl. Opt. 51(35), 8360–8365 (2012).
[Crossref] [PubMed]

2011 (5)

2009 (1)

2008 (1)

1995 (1)

S. Chou, P. Krauss, and P. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[Crossref]

1987 (1)

1982 (1)

1977 (1)

1967 (1)

1965 (1)

Alexander, R. W.

Arikawa, T.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Auton, J. P.

Barman, A.

Baughman, R. H.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Bell, R. J.

Chan, H. P.

Z. Huang, E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, “High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure,” Opt. Lett. 39(4), 793–796 (2014).
[PubMed]

Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett. 25(1), 81–84 (2013).
[Crossref]

Chou, S.

S. Chou, P. Krauss, and P. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[Crossref]

Chua, S. J.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

Costley, A. E.

Deng, L. Y.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

Einishi, T.

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(8), 082502 (2012).
[Crossref]

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass,” Opt. Lett. 36(19), 3882–3884 (2011).
[Crossref] [PubMed]

Fukumi, K.

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(8), 082502 (2012).
[Crossref]

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass,” Opt. Lett. 36(19), 3882–3884 (2011).
[Crossref] [PubMed]

Gallot, G.

Ganguly, A.

Gaylord, T. K.

Hangyo, M.

Hass, M.

Hassinen, S.

Hauge, R. H.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Hsieh, C. F.

Huang, Z.

Z. Huang, E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, “High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure,” Opt. Lett. 39(4), 793–796 (2014).
[PubMed]

Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett. 25(1), 81–84 (2013).
[Crossref]

Hursey, K. H.

Ichii, A.

Itkonen, T.

Jang, E. Y.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Kawayama, I.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Kim, D.-S.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Kim, Y. H.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Kono, J.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Krauss, P.

S. Chou, P. Krauss, and P. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[Crossref]

Kuittinen, M.

Kyoung, J.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Lai, Y. C.

Lepró, X.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Lima, M. D.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Liu, H.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

Long, L. L.

Mitra, R. K.

Moharam, M. G.

Mönkkönen, K.

Morimoto, I.

Mutanen, J.

Neill, G. F.

Nishii, J.

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(8), 082502 (2012).
[Crossref]

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass,” Opt. Lett. 36(19), 3882–3884 (2011).
[Crossref] [PubMed]

O’Hara, M.

Ordal, M. A.

Oyama, S.

Pääkkönen, P.

Pan, C. L.

Pan, R. P.

Park, H.

Z. Huang, E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, “High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure,” Opt. Lett. 39(4), 793–796 (2014).
[PubMed]

Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett. 25(1), 81–84 (2013).
[Crossref]

Park, H. R.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Parrott, E. P. J.

Z. Huang, E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, “High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure,” Opt. Lett. 39(4), 793–796 (2014).
[PubMed]

Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett. 25(1), 81–84 (2013).
[Crossref]

Partanen, A.

Pickwell-MacPherson, E.

Z. Huang, E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, “High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure,” Opt. Lett. 39(4), 793–796 (2014).
[PubMed]

Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett. 25(1), 81–84 (2013).
[Crossref]

Pint, C. L.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Polley, D.

Querry, M. R.

Ren, L.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Renstrom, P.

S. Chou, P. Krauss, and P. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[Crossref]

Robles, R. O.

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Saito, M.

Shiraishi, K.

Silfsten, P.

Takano, K.

Takeya, K.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Tani, K.

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(8), 082502 (2012).
[Crossref]

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass,” Opt. Lett. 36(19), 3882–3884 (2011).
[Crossref] [PubMed]

Teng, J. H.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

Tonouchi, M.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Tsai, C. S.

Tuovinen, H.

Väyrynen, J.

Venäläinen, T.

Ward, J. M.

Watanabe, W.

Wojdyla, A.

Wu, Q. Y.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

Yamada, I.

Yamashita, N.

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(8), 082502 (2012).
[Crossref]

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass,” Opt. Lett. 36(19), 3882–3884 (2011).
[Crossref] [PubMed]

Yokoyama, H.

Zhang, L.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

Zhang, X. H.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Express (1)

I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, “Infrared wire-grid polarizer with antireflection structure by imprinting on both sides,” Appl. Phys. Express 5(8), 082502 (2012).
[Crossref]

Appl. Phys. Lett. (2)

S. Chou, P. Krauss, and P. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[Crossref]

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett. 25(1), 81–84 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (2)

Nano Lett. (2)

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

J. Kyoung, E. Y. Jang, M. D. Lima, H. R. Park, R. O. Robles, X. Lepró, Y. H. Kim, R. H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Other (3)

K. Shiraishi, M. Kofuji, Y. Inagawa, H. Yoda, and C. S. Tsai, “Fabrication of thin metallic-film subwavelength-grating polarizers for terahertz region by the imprinting method,” in Tech. Digest, CLEO, (San Jose CA, May 2012), paper JW2A45.
[Crossref]

in catalogues of TYDEX, J. S. Co., http://www.tydexoptics.com/products/thz_optics/polarizers/ and InfraSpecs Co., http://www.infraspecs.de/index.html .

Optical properties of Tsurupica resin are provided in the database, http://www.riken.jp/THzdatabase/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of the polarizer and (b) simplified model illustrating TM-wave transmission.
Fig. 2
Fig. 2 (a) Bird’s-eye view and (b) SEM photomicrograph of the metal mold used in the experiments.
Fig. 3
Fig. 3 Cross sections of the grating fabricated on the surface of the substrate; (a) photomicrograph and (b) structural parameters.
Fig. 4
Fig. 4 Cross-sectional SEM photomicrographs of the triple layer deposited on the sub-wavelength grating.
Fig. 5
Fig. 5 (a) Estimated Z-directional (t) and surface normal (tn) Au-thickness distributions. (b) Calculated transmission losses for polarizers with uniform and non-uniform Au-thickness distributions.
Fig. 6
Fig. 6 The fabricated polarizer.
Fig. 7
Fig. 7 Measured transmission characteristics of the polarizer: (a) time-domain detector output waveforms and (b) transmission losses for the TM and TE waves.

Metrics