Abstract

We report for the first time two typical phase coherence lengths in highly confined silicon waveguides fabricated in a standard CMOS foundry's multi-project-wafer shuttle run in the 220nm silicon-on-insulator wafer with 248nm lithography. By measuring the random phase fluctuations of 800 on-chip silicon Mach-Zehnder interferometers across the wafer, we extracted, with statistical significance, the coherence lengths to be 4.17 ± 0.42 mm and 1.61 ± 0.12 mm for single mode strip waveguide and rib waveguide, respectively. We present a new experimental method to quantify the phase coherence length. The theory model is verified by both our and others' experiments. Coherence length is expected to become one key parameter of the fabrication non-uniformity to guide the design of silicon photonics.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform

Zhi Zou, Linjie Zhou, Xinwan Li, and Jianping Chen
Opt. Express 23(16) 20784-20795 (2015)

Silicon photonic platforms for mid-infrared applications [Invited]

Ting Hu, Bowei Dong, Xianshu Luo, Tsung-Yang Liow, Junfeng Song, Chengkuo Lee, and Guo-Qiang Lo
Photon. Res. 5(5) 417-430 (2017)

Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth

Peter O. Weigel, Jie Zhao, Kelvin Fang, Hasan Al-Rubaye, Douglas Trotter, Dana Hood, John Mudrick, Christina Dallo, Andrew T. Pomerene, Andrew L. Starbuck, Christopher T. DeRose, Anthony L. Lentine, Gabriel Rebeiz, and Shayan Mookherjea
Opt. Express 26(18) 23728-23739 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, Silicon Photonics: The State of the Art (WILEY, 2008).
  2. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
    [Crossref]
  3. C. Gunn, “CMOS photonics for high-speed interconnectors,” IEEE Micro 26(2), 58–66 (2006).
    [Crossref]
  4. T. Seok, N. Quack, S. Han, and M. Wu, “50x50 digital silicon photonic switches with MEMS-actuated adiabatic couplers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2015), paper M2B.4.
    [Crossref]
  5. P. Dong, Y. Chen, and L. Buhl, “Reconfigurable four-channel polarization diversity silicon photonic WDM receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2015), paper W3A.2.
    [Crossref]
  6. X. Xiao, H. Xu, X. Li, Z. Li, Y. Yu, and J. Yu, “High-speed on-chip photonic link based on ultralow-power microring modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2014), paper Tu2E.6.
    [Crossref]
  7. S. Srinivasan, R. Moreira, D. Blumenthal, and J. E. Bowers, “Design of integrated hybrid silicon waveguide optical gyroscope,” Opt. Express 22(21), 24988–24993 (2014).
    [Crossref] [PubMed]
  8. M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
    [Crossref] [PubMed]
  9. B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics 4(8), 506–508 (2010).
    [Crossref]
  10. N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047(1)-041047(10) (2014).
    [Crossref]
  11. K. Petermann, A. Gajda, G. Dziallas, M. Jazayerifar, L. Zimmermann, B. Tillack, F. Da Ros, D. Vukovic, K. Dalgaard, M. Galili, and C. Peucheret, “Phase-sensitive optical processing in silicon waveguides,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (OSA, 2015), paper Tu2F.4.
    [Crossref]
  12. Q. Chen, F. Zhang, L. Zhang, Y. Tian, P. Zhou, J. Ding, and L. Yang, “1 Gbps directed optical decoder based on two cascaded microring resonators,” Opt. Lett. 39(14), 4255–4258 (2014).
    [Crossref] [PubMed]
  13. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
  14. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18(23), 23598–23607 (2010).
    [Crossref] [PubMed]
  15. A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3(3), 567–579 (2011).
    [Crossref]
  16. L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2014), paper Th2A.37.
    [Crossref]
  17. S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Katoh, T. Hino, and K. Fukuchi, “Compact and low-loss 8x8 silicon photonic switch module for transponder aggregators in CDC-ROADM application,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2015), paper M2B.6.
    [Crossref]
  18. Y. Liu, R. Ding, Q. Li, X. Zhe, Y. Li, Y. Yang, A. Lim, P. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320 Gb/s and 160 Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2014), paper Th4G.6.
    [Crossref]
  19. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
    [Crossref]
  20. R. Feced and M. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” IEEE/OSA J. Lightwave Technol. 18(1), 90–101 (2000).
    [Crossref]
  21. R. Adar, C. Henry, M. Milbrodt, and R. Kistler, “Phase coherence of optical waveguides,” IEEE/OSA J. Lightwave Technol. 12(4), 603–606 (1994).
    [Crossref]
  22. T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” IEEE/OSA J. Lightwave Technol. 15(11), 2107–2113 (1997).
    [Crossref]
  23. A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. Larochelle, “Characterization and reduction of spectral distortions in Silicon-on-Insulator integrated Bragg gratings,” Opt. Express 21(20), 23145–23159 (2013).
    [Crossref] [PubMed]
  24. Multi-Physics Software Comsol Corporation, “RF module - software for microwave and RF design,” http://www.comsol.com/rf-module (3.1.2015).
  25. SOITEC Corporation, “Soitec silicon-on-isolator products,” http://www.soitec.com/en/products-and-services/microelectronics/wave-soi (3.1.2015).
  26. M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).
  27. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  28. C. Qiu, Z. Sheng, H. Li, W. Liu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Fabrication, characterization and loss analysis of silicon nanowaveguides,” IEEE/OSA J. Lightwave Technol. 32(13), 2303–2307 (2014).
    [Crossref]
  29. R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
    [Crossref]

2014 (5)

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

C. Qiu, Z. Sheng, H. Li, W. Liu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Fabrication, characterization and loss analysis of silicon nanowaveguides,” IEEE/OSA J. Lightwave Technol. 32(13), 2303–2307 (2014).
[Crossref]

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Q. Chen, F. Zhang, L. Zhang, Y. Tian, P. Zhou, J. Ding, and L. Yang, “1 Gbps directed optical decoder based on two cascaded microring resonators,” Opt. Lett. 39(14), 4255–4258 (2014).
[Crossref] [PubMed]

S. Srinivasan, R. Moreira, D. Blumenthal, and J. E. Bowers, “Design of integrated hybrid silicon waveguide optical gyroscope,” Opt. Express 22(21), 24988–24993 (2014).
[Crossref] [PubMed]

2013 (1)

2011 (1)

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3(3), 567–579 (2011).
[Crossref]

2010 (3)

B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics 4(8), 506–508 (2010).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18(23), 23598–23607 (2010).
[Crossref] [PubMed]

2009 (1)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

2008 (1)

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

2006 (1)

C. Gunn, “CMOS photonics for high-speed interconnectors,” IEEE Micro 26(2), 58–66 (2006).
[Crossref]

2000 (1)

R. Feced and M. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” IEEE/OSA J. Lightwave Technol. 18(1), 90–101 (2000).
[Crossref]

1997 (1)

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” IEEE/OSA J. Lightwave Technol. 15(11), 2107–2113 (1997).
[Crossref]

1994 (1)

R. Adar, C. Henry, M. Milbrodt, and R. Kistler, “Phase coherence of optical waveguides,” IEEE/OSA J. Lightwave Technol. 12(4), 603–606 (1994).
[Crossref]

Adar, R.

R. Adar, C. Henry, M. Milbrodt, and R. Kistler, “Phase coherence of optical waveguides,” IEEE/OSA J. Lightwave Technol. 12(4), 603–606 (1994).
[Crossref]

Ahn, D.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Aimez, V.

Apsel, A.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Baehr-Jones, T.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Beals, M.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Beattie, J.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Beaudin, G.

Bergman, K.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Blumenthal, D.

Bowers, J. E.

Carothers, D.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Chen, Q.

Chen, Y.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Cunningham, J.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3(3), 567–579 (2011).
[Crossref]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Ding, J.

Ding, R.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Feced, R.

R. Feced and M. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” IEEE/OSA J. Lightwave Technol. 18(1), 90–101 (2000).
[Crossref]

Forties, R. A.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Fulbright, R. M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Gan, F.

C. Qiu, Z. Sheng, H. Li, W. Liu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Fabrication, characterization and loss analysis of silicon nanowaveguides,” IEEE/OSA J. Lightwave Technol. 32(13), 2303–2307 (2014).
[Crossref]

Gill, D.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Goh, T.

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” IEEE/OSA J. Lightwave Technol. 15(11), 2107–2113 (1997).
[Crossref]

Gunn, C.

C. Gunn, “CMOS photonics for high-speed interconnectors,” IEEE Micro 26(2), 58–66 (2006).
[Crossref]

Henry, C.

R. Adar, C. Henry, M. Milbrodt, and R. Kistler, “Phase coherence of optical waveguides,” IEEE/OSA J. Lightwave Technol. 12(4), 603–606 (1994).
[Crossref]

Ho, R.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Hochberg, M.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Hong, C.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Inman, J. T.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Jalali, B.

B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics 4(8), 506–508 (2010).
[Crossref]

Kimerling, L.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Kistler, R.

R. Adar, C. Henry, M. Milbrodt, and R. Kistler, “Phase coherence of optical waveguides,” IEEE/OSA J. Lightwave Technol. 12(4), 603–606 (1994).
[Crossref]

Koka, P.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Kopa, A.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3(3), 567–579 (2011).
[Crossref]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Larochelle, S.

Lexau, J.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Li, G.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3(3), 567–579 (2011).
[Crossref]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Li, H.

C. Qiu, Z. Sheng, H. Li, W. Liu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Fabrication, characterization and loss analysis of silicon nanowaveguides,” IEEE/OSA J. Lightwave Technol. 32(13), 2303–2307 (2014).
[Crossref]

Li, L.

C. Qiu, Z. Sheng, H. Li, W. Liu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Fabrication, characterization and loss analysis of silicon nanowaveguides,” IEEE/OSA J. Lightwave Technol. 32(13), 2303–2307 (2014).
[Crossref]

Li, Q.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Lim, A. E.-J.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Lin, J.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Lipson, M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Liu, J.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Liu, W.

C. Qiu, Z. Sheng, H. Li, W. Liu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Fabrication, characterization and loss analysis of silicon nanowaveguides,” IEEE/OSA J. Lightwave Technol. 32(13), 2303–2307 (2014).
[Crossref]

Liu, Y.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Lo, G.-Q.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Luo, Y.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3(3), 567–579 (2011).
[Crossref]

Ma, Y.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Mekis, A.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3(3), 567–579 (2011).
[Crossref]

Michel, J.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Milbrodt, M.

R. Adar, C. Henry, M. Milbrodt, and R. Kistler, “Phase coherence of optical waveguides,” IEEE/OSA J. Lightwave Technol. 12(4), 603–606 (1994).
[Crossref]

Moreira, R.

Padmaraju, K.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Painchaud, Y.

Pang, A.

C. Qiu, Z. Sheng, H. Li, W. Liu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Fabrication, characterization and loss analysis of silicon nanowaveguides,” IEEE/OSA J. Lightwave Technol. 32(13), 2303–2307 (2014).
[Crossref]

Patel, S.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Pinguet, T.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3(3), 567–579 (2011).
[Crossref]

Pomerene, A.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Qiu, C.

C. Qiu, Z. Sheng, H. Li, W. Liu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Fabrication, characterization and loss analysis of silicon nanowaveguides,” IEEE/OSA J. Lightwave Technol. 32(13), 2303–2307 (2014).
[Crossref]

Raj, K.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3(3), 567–579 (2011).
[Crossref]

Rasras, M.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Saraf, S. N.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Schwetman, H.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Sheng, Z.

C. Qiu, Z. Sheng, H. Li, W. Liu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Fabrication, characterization and loss analysis of silicon nanowaveguides,” IEEE/OSA J. Lightwave Technol. 32(13), 2303–2307 (2014).
[Crossref]

Shubin, I.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3(3), 567–579 (2011).
[Crossref]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Simard, A. D.

Soltani, M.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Sparacin, D.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Srinivasan, S.

Sugita, A.

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” IEEE/OSA J. Lightwave Technol. 15(11), 2107–2113 (1997).
[Crossref]

Sun, R.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Suzuki, S.

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” IEEE/OSA J. Lightwave Technol. 15(11), 2107–2113 (1997).
[Crossref]

Thacker, H.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3(3), 567–579 (2011).
[Crossref]

Tian, Y.

Trotter, D. C.

Tu, K.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Wang, M. D.

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Wang, X.

C. Qiu, Z. Sheng, H. Li, W. Liu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Fabrication, characterization and loss analysis of silicon nanowaveguides,” IEEE/OSA J. Lightwave Technol. 32(13), 2303–2307 (2014).
[Crossref]

Watts, M. R.

White, A.

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Wu, A.

C. Qiu, Z. Sheng, H. Li, W. Liu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Fabrication, characterization and loss analysis of silicon nanowaveguides,” IEEE/OSA J. Lightwave Technol. 32(13), 2303–2307 (2014).
[Crossref]

Yang, L.

Yang, Y.

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Yao, J.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3(3), 567–579 (2011).
[Crossref]

Zervas, M.

R. Feced and M. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” IEEE/OSA J. Lightwave Technol. 18(1), 90–101 (2000).
[Crossref]

Zhang, F.

Zhang, L.

Zheng, X.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3(3), 567–579 (2011).
[Crossref]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Zhou, P.

Zortman, W. A.

Zou, S.

C. Qiu, Z. Sheng, H. Li, W. Liu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Fabrication, characterization and loss analysis of silicon nanowaveguides,” IEEE/OSA J. Lightwave Technol. 32(13), 2303–2307 (2014).
[Crossref]

IEEE Micro (1)

C. Gunn, “CMOS photonics for high-speed interconnectors,” IEEE Micro 26(2), 58–66 (2006).
[Crossref]

IEEE Photonics J. (1)

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics J. 3(3), 567–579 (2011).
[Crossref]

IEEE/OSA J. Lightwave Technol. (4)

R. Feced and M. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” IEEE/OSA J. Lightwave Technol. 18(1), 90–101 (2000).
[Crossref]

R. Adar, C. Henry, M. Milbrodt, and R. Kistler, “Phase coherence of optical waveguides,” IEEE/OSA J. Lightwave Technol. 12(4), 603–606 (1994).
[Crossref]

T. Goh, S. Suzuki, and A. Sugita, “Estimation of waveguide phase error in silica-based waveguides,” IEEE/OSA J. Lightwave Technol. 15(11), 2107–2113 (1997).
[Crossref]

C. Qiu, Z. Sheng, H. Li, W. Liu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou, and F. Gan, “Fabrication, characterization and loss analysis of silicon nanowaveguides,” IEEE/OSA J. Lightwave Technol. 32(13), 2303–2307 (2014).
[Crossref]

Nat. Nanotechnol. (1)

M. Soltani, J. Lin, R. A. Forties, J. T. Inman, S. N. Saraf, R. M. Fulbright, M. Lipson, and M. D. Wang, “Nanophotonic trapping for precise manipulation of biomolecular arrays,” Nat. Nanotechnol. 9(6), 448–452 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics 4(8), 506–508 (2010).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Opt. Commun. (1)

R. Ding, Y. Liu, Q. Li, Y. Yang, Y. Ma, K. Padmaraju, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. IEEE (1)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[Crossref]

Proc. SPIE (1)

M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers, J. Beattie, A. Kopa, A. Apsel, M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, and A. White, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE 6898, 1–14 (2008).

Other (13)

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

G. T. Reed, Silicon Photonics: The State of the Art (WILEY, 2008).

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047(1)-041047(10) (2014).
[Crossref]

K. Petermann, A. Gajda, G. Dziallas, M. Jazayerifar, L. Zimmermann, B. Tillack, F. Da Ros, D. Vukovic, K. Dalgaard, M. Galili, and C. Peucheret, “Phase-sensitive optical processing in silicon waveguides,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (OSA, 2015), paper Tu2F.4.
[Crossref]

T. Seok, N. Quack, S. Han, and M. Wu, “50x50 digital silicon photonic switches with MEMS-actuated adiabatic couplers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2015), paper M2B.4.
[Crossref]

P. Dong, Y. Chen, and L. Buhl, “Reconfigurable four-channel polarization diversity silicon photonic WDM receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2015), paper W3A.2.
[Crossref]

X. Xiao, H. Xu, X. Li, Z. Li, Y. Yu, and J. Yu, “High-speed on-chip photonic link based on ultralow-power microring modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2014), paper Tu2E.6.
[Crossref]

Multi-Physics Software Comsol Corporation, “RF module - software for microwave and RF design,” http://www.comsol.com/rf-module (3.1.2015).

SOITEC Corporation, “Soitec silicon-on-isolator products,” http://www.soitec.com/en/products-and-services/microelectronics/wave-soi (3.1.2015).

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2014), paper Th2A.37.
[Crossref]

S. Nakamura, S. Yanagimachi, H. Takeshita, A. Tajima, T. Katoh, T. Hino, and K. Fukuchi, “Compact and low-loss 8x8 silicon photonic switch module for transponder aggregators in CDC-ROADM application,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2015), paper M2B.6.
[Crossref]

Y. Liu, R. Ding, Q. Li, X. Zhe, Y. Li, Y. Yang, A. Lim, P. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Ultra-compact 320 Gb/s and 160 Gb/s WDM transmitters based on silicon microrings,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2014), paper Th4G.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Cross-sections of two kinds of waveguides used to build MZIs: (a) the rib waveguide, (b) the strip waveguide.
Fig. 2
Fig. 2 The relationship between the effective index and the waveguide geometry. The geometry parameters are (a) waveguide thickness, (b) waveguide width, (c) sidewall angle and (d) slab layer thickness. The inset figures show the definition of the geometry parameters. In (c), the inset figure also shows the mode profile when the sidewall angle is 45°. Default geometry parameters are the same as shown in Fig. 1. Input wavelength is 1550nm.
Fig. 3
Fig. 3 Automatic wafer-scale test setup and measured of MZI spectra: (a) the photograph of wafer-scale auto-test setup with a 6” silicon photonics wafer loaded and (b) zoom in on-chip devices and fiber array. (c) Transmission spectra of six nominally identical MZIs in the same die. Device layout is shown in the inset. dL = 144μm. (d) Extracted group index versus resonant wavelength for MZIs (dL = 144μm) in one die (about 100 samples). The dots close to the dashed line have same azimuthal mode index m.
Fig. 4
Fig. 4 Coherence length measurement results: (a, c) the relationship between strip/rib waveguide length and the variances of random phase shifts; (b, d) the statistics of coherence length of strip/ rib waveguide in 8 dies across a MPW wafer.
Fig. 5
Fig. 5 Typical insertion loss test results in one die (red dots /blue dots) the experiment results of strip/rib waveguide's output power versus its length; (red line/ blue line) The linear regress of strip / rib waveguide's output power versus their lengths.
Fig. 6
Fig. 6 Cross-wafer measurement in MPW for strip/rib waveguide based MZIs (dL = 144μm): (a/b) Contour plots of strip / rib waveguide based MZIs' resonance wavelengths; (c/d) contour plots of strip / rib waveguide based MZIs FSRs
Fig. 7
Fig. 7 The second method of calculating coherence length by the total arm length of MZI: (a, b) The relationship between strip and rib waveguide length and the variances of random phase shifts in 8 dies across a MPW wafer.
Fig. 8
Fig. 8 The simulated phase noise variance as a function of the dL for the rib MZI by the Monte-Carlo method. The rib waveguide's slab thickness' standard deviation is assumed to be 0.25 nm.
Fig. 9
Fig. 9 The T-test results of the experimental data shown in Fig. 4(a, c). When the degree of freedom (n') is 4, T-value is 8.61 for the Error I's α level of 0.1%, as shown in blue bars. (Green bars): rib waveguide; (Red bars): strip waveguide

Tables (2)

Tables Icon

Table 1 The proportionality constants that link the waveguide width, thickness, sidewall angle and slab height variations to an effective index variation

Tables Icon

Table 2 MZIs' arm lengths in coherence length experiment. L1: arm1 length, L2: arm 2 length, dL = L2-L1; total length L = L1 + L2.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

n eff,i (x)=< n eff >+Δ n eff,i (x),
2π λ 0 dL n eff (x)dx=(2m+1)π,
2π λ < n eff >+Δ ϕ i (dL)=(2m+1)π,
Δ ϕ i (dL)= 2π λ 0 dL n eff (x)dx.
Δ ϕ i (dL)= 2π λ 0 L 1 + L 2 n eff (x)dx.
k= d< n eff > dλ .
2π λ 1 < n eff ( λ 1 )>dL 2π λ 2 < n eff ( λ 2 )>dL=2π,
2π λ 1 < n eff ( λ 1 )>dL 2π λ 2 [ < n eff ( λ 1 )>+kFSR ]dL=2π,
FSR= λ 1 λ 2 n g L .
<Δϕ (dL) 2 >= 2L L coh .
n g = n eff (λ)λ d n eff dλ = n eff (λ)kλ.
Δ L eff = Δϕ(dL) 2π λ n eff .
Δt= Δ L eff c/ n eff .
Δλ=FSR std(Δϕ) 2π .
V tune = V π Δλ 0.5FSR .

Metrics