Abstract

We report a hybrid plasmonic waveguide consisting of a nanofiber coupled with a copper film on a silicon substrate. The nanofiber can be flexibly placed on the copper film to generate a highly localized optical field. Due to the easy attachment of the nanofiber to the metal surface, it is convenient to reconfigure the hybrid plasmonic waveguide. We investigate two waveguide systems with either a straight or a curved nanofiber coupled with the copper film. The straight nanofiber could excite two hybrid plasmonic modes, leading to periodic field oscillation along the metal surface. In contrast, the curved nanofiber can only excite the fundamental mode, owing to the adiabatic mode conversion before the hybrid waveguide. The propagation loss of the fundamental hybrid plasmonic mode is measured to be around 25.32 dB/mm for a nanofiber radius of 0.8 μm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement

Yusheng Bian, Zheng Zheng, Ya Liu, Jiansheng Liu, Jinsong Zhu, and Tao Zhou
Opt. Express 19(23) 22417-22422 (2011)

Plasmonic mode-gap waveguides using hetero-metal films

Sangjun Lee and Sangin Kim
Opt. Express 18(3) 2197-2208 (2010)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  2. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
    [Crossref] [PubMed]
  3. M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J. M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20(16), 17402–17410 (2012).
    [Crossref] [PubMed]
  4. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010).
    [Crossref]
  5. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
    [Crossref] [PubMed]
  6. C. C. Huang, “Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices,” Opt. Express 21(24), 29544–29557 (2013).
    [Crossref] [PubMed]
  7. X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50(20), 3428–3434 (2011).
    [Crossref] [PubMed]
  8. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
    [Crossref] [PubMed]
  9. Y. Wang, Y. Ma, X. Guo, and L. Tong, “Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates,” Opt. Express 20(17), 19006–19015 (2012).
    [Crossref] [PubMed]
  10. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
    [Crossref] [PubMed]
  11. R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett. 35(5), 649–651 (2010).
    [Crossref] [PubMed]
  12. X. Li, X. Guo, D. Wang, and L. Tong, “Propagation losses in gold nanowires,” Opt. Commun. 323, 119–122 (2014).
    [Crossref]
  13. J. M. M Z. Alam, J S. Aitchison, and M Mojahedi “Super mode propagation in low index medium,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JThD112 (2007).
  14. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
    [Crossref] [PubMed]
  15. D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010).
    [PubMed]
  16. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8(3), 394–408 (2014).
    [Crossref]
  17. Z.-X. Chen, Z.-J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
    [Crossref]
  18. Q. Lu, C.-L. Zou, D. Chen, P. Zhou, and G. Wu, “Extreme light confinement and low loss in triangle hybrid plasmonic waveguide,” Opt. Commun. 319, 141–146 (2014).
    [Crossref]
  19. B. Olyaeefar and H. Khoshsima, “Low-loss ultra-subwavelength hybrid plasmonic waveguide based on metallic bump structures,” J. Phys. D Appl. Phys. 47(10), 105105 (2014).
    [Crossref]
  20. D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt. 49(36), 6868–6871 (2010).
    [Crossref] [PubMed]
  21. C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable fiber-integrated hybrid plasmonic waveguide on metal film,” IEEE Photon. Technol. Lett. 24(6), 434–436 (2012).
    [Crossref]
  22. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37(1), 55–57 (2012).
    [Crossref] [PubMed]
  23. Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
    [Crossref]
  24. L. Zhou, X. Sun, X. Li, and J. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel) 11(12), 6856–6867 (2011).
    [Crossref] [PubMed]
  25. M. Z. Alam, F. Bahrami, J. S. Aitchison, and M. Mojahedi, “Analysis and optimization of hybrid plasmonic waveguide as a platform for biosensing,” IEEE Photonics Journal 6(4), 1–10 (2014).
    [Crossref]
  26. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
    [Crossref]
  27. Z. Hong, L. Zhou, X. Li, W. Zou, X. Sun, S. Li, J. Shen, H. Luo, and J. Chen, “Design and analysis of a highly efficient coupler between a micro/nano optical fiber and an SOI waveguide,” Appl. Opt. 51(16), 3410–3415 (2012).
    [Crossref] [PubMed]
  28. L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
    [Crossref]
  29. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  30. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC press, 2004).

2014 (7)

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8(3), 394–408 (2014).
[Crossref]

Z.-X. Chen, Z.-J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
[Crossref]

Q. Lu, C.-L. Zou, D. Chen, P. Zhou, and G. Wu, “Extreme light confinement and low loss in triangle hybrid plasmonic waveguide,” Opt. Commun. 319, 141–146 (2014).
[Crossref]

B. Olyaeefar and H. Khoshsima, “Low-loss ultra-subwavelength hybrid plasmonic waveguide based on metallic bump structures,” J. Phys. D Appl. Phys. 47(10), 105105 (2014).
[Crossref]

X. Li, X. Guo, D. Wang, and L. Tong, “Propagation losses in gold nanowires,” Opt. Commun. 323, 119–122 (2014).
[Crossref]

M. Z. Alam, F. Bahrami, J. S. Aitchison, and M. Mojahedi, “Analysis and optimization of hybrid plasmonic waveguide as a platform for biosensing,” IEEE Photonics Journal 6(4), 1–10 (2014).
[Crossref]

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

2013 (1)

2012 (7)

Y. Wang, Y. Ma, X. Guo, and L. Tong, “Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates,” Opt. Express 20(17), 19006–19015 (2012).
[Crossref] [PubMed]

M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J. M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20(16), 17402–17410 (2012).
[Crossref] [PubMed]

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable fiber-integrated hybrid plasmonic waveguide on metal film,” IEEE Photon. Technol. Lett. 24(6), 434–436 (2012).
[Crossref]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37(1), 55–57 (2012).
[Crossref] [PubMed]

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Z. Hong, L. Zhou, X. Li, W. Zou, X. Sun, S. Li, J. Shen, H. Luo, and J. Chen, “Design and analysis of a highly efficient coupler between a micro/nano optical fiber and an SOI waveguide,” Appl. Opt. 51(16), 3410–3415 (2012).
[Crossref] [PubMed]

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

2011 (2)

L. Zhou, X. Sun, X. Li, and J. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel) 11(12), 6856–6867 (2011).
[Crossref] [PubMed]

X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50(20), 3428–3434 (2011).
[Crossref] [PubMed]

2010 (8)

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[Crossref] [PubMed]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010).
[Crossref] [PubMed]

R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett. 35(5), 649–651 (2010).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010).
[Crossref]

Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
[Crossref] [PubMed]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt. 49(36), 6868–6871 (2010).
[Crossref] [PubMed]

D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010).
[PubMed]

2009 (1)

2008 (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Aassime, A.

Abushagur, M. A. G.

Aitchison, J. S.

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8(3), 394–408 (2014).
[Crossref]

M. Z. Alam, F. Bahrami, J. S. Aitchison, and M. Mojahedi, “Analysis and optimization of hybrid plasmonic waveguide as a platform for biosensing,” IEEE Photonics Journal 6(4), 1–10 (2014).
[Crossref]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37(1), 55–57 (2012).
[Crossref] [PubMed]

Alam, M. Z.

M. Z. Alam, F. Bahrami, J. S. Aitchison, and M. Mojahedi, “Analysis and optimization of hybrid plasmonic waveguide as a platform for biosensing,” IEEE Photonics Journal 6(4), 1–10 (2014).
[Crossref]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8(3), 394–408 (2014).
[Crossref]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37(1), 55–57 (2012).
[Crossref] [PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Bahrami, F.

M. Z. Alam, F. Bahrami, J. S. Aitchison, and M. Mojahedi, “Analysis and optimization of hybrid plasmonic waveguide as a platform for biosensing,” IEEE Photonics Journal 6(4), 1–10 (2014).
[Crossref]

Barbillon, G.

Bartenlian, B.

Blaize, S.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Bokor, J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Bowers, J. E.

Bruyant, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Cabrini, S.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Chelnokov, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Chen, D.

Q. Lu, C.-L. Zou, D. Chen, P. Zhou, and G. Wu, “Extreme light confinement and low loss in triangle hybrid plasmonic waveguide,” Opt. Commun. 319, 141–146 (2014).
[Crossref]

D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt. 49(36), 6868–6871 (2010).
[Crossref] [PubMed]

Chen, J.

Chen, X.-D.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable fiber-integrated hybrid plasmonic waveguide on metal film,” IEEE Photon. Technol. Lett. 24(6), 434–436 (2012).
[Crossref]

Chen, Z.-X.

Z.-X. Chen, Z.-J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
[Crossref]

Cheng, Y.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Chiang, K. S.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Choo, H.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Cui, J.-M.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable fiber-integrated hybrid plasmonic waveguide on metal film,” IEEE Photon. Technol. Lett. 24(6), 434–436 (2012).
[Crossref]

Dagens, B.

Dai, D.

Delacour, C.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Desiatov, B.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010).
[Crossref]

Dong, C.-H.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable fiber-integrated hybrid plasmonic waveguide on metal film,” IEEE Photon. Technol. Lett. 24(6), 434–436 (2012).
[Crossref]

Elezzabi, A. Y.

Fedeli, J. M.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Février, M.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Gogol, P.

Gong, Y.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Goykhman, I.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010).
[Crossref]

Grosse, P.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Guo, G.-C.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable fiber-integrated hybrid plasmonic waveguide on metal film,” IEEE Photon. Technol. Lett. 24(6), 434–436 (2012).
[Crossref]

Guo, X.

X. Li, X. Guo, D. Wang, and L. Tong, “Propagation losses in gold nanowires,” Opt. Commun. 323, 119–122 (2014).
[Crossref]

Y. Wang, Y. Ma, X. Guo, and L. Tong, “Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates,” Opt. Express 20(17), 19006–19015 (2012).
[Crossref] [PubMed]

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Han, Z.

Han, Z.-F.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable fiber-integrated hybrid plasmonic waveguide on metal film,” IEEE Photon. Technol. Lett. 24(6), 434–436 (2012).
[Crossref]

He, S.

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Hong, Z.

Huang, C. C.

Julian, N.

Khoshsima, H.

B. Olyaeefar and H. Khoshsima, “Low-loss ultra-subwavelength hybrid plasmonic waveguide based on metallic bump structures,” J. Phys. D Appl. Phys. 47(10), 105105 (2014).
[Crossref]

Kim, M.-K.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Lerondel, G.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Levy, U.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010).
[Crossref]

Li, Q.

Li, S.

Li, X.

Lou, J.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Lourtioz, J. M.

Lu, Q.

Q. Lu, C.-L. Zou, D. Chen, P. Zhou, and G. Wu, “Extreme light confinement and low loss in triangle hybrid plasmonic waveguide,” Opt. Commun. 319, 141–146 (2014).
[Crossref]

Lu, Y.-Q.

Z.-X. Chen, Z.-J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
[Crossref]

Lu, Z.

Luo, H.

Lv, L.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable fiber-integrated hybrid plasmonic waveguide on metal film,” IEEE Photon. Technol. Lett. 24(6), 434–436 (2012).
[Crossref]

Ma, Y.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mégy, R.

Ming, Y.

Z.-X. Chen, Z.-J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
[Crossref]

Mojahedi, M.

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8(3), 394–408 (2014).
[Crossref]

M. Z. Alam, F. Bahrami, J. S. Aitchison, and M. Mojahedi, “Analysis and optimization of hybrid plasmonic waveguide as a platform for biosensing,” IEEE Photonics Journal 6(4), 1–10 (2014).
[Crossref]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37(1), 55–57 (2012).
[Crossref] [PubMed]

Olyaeefar, B.

B. Olyaeefar and H. Khoshsima, “Low-loss ultra-subwavelength hybrid plasmonic waveguide based on metallic bump structures,” J. Phys. D Appl. Phys. 47(10), 105105 (2014).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Qiu, M.

Rao, Y.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Ren, X.-F.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable fiber-integrated hybrid plasmonic waveguide on metal film,” IEEE Photon. Technol. Lett. 24(6), 434–436 (2012).
[Crossref]

Salas-Montiel, R.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Schuck, P. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Seok, T. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Shen, J.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Song, Y.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Staffaroni, M.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Sun, F.-W.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable fiber-integrated hybrid plasmonic waveguide on metal film,” IEEE Photon. Technol. Lett. 24(6), 434–436 (2012).
[Crossref]

Sun, X.

Tong, L.

X. Li, X. Guo, D. Wang, and L. Tong, “Propagation losses in gold nanowires,” Opt. Commun. 323, 119–122 (2014).
[Crossref]

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Y. Wang, Y. Ma, X. Guo, and L. Tong, “Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates,” Opt. Express 20(17), 19006–19015 (2012).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Van, V.

Wahsheh, R. A.

Wang, D.

X. Li, X. Guo, D. Wang, and L. Tong, “Propagation losses in gold nanowires,” Opt. Commun. 323, 119–122 (2014).
[Crossref]

Wang, J.

Wang, Y.

Wang, Z.

Wu, B.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Wu, G.

Q. Lu, C.-L. Zou, D. Chen, P. Zhou, and G. Wu, “Extreme light confinement and low loss in triangle hybrid plasmonic waveguide,” Opt. Commun. 319, 141–146 (2014).
[Crossref]

Wu, M.

Wu, M. C.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Wu, Y.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Wu, Z.-J.

Z.-X. Chen, Z.-J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
[Crossref]

Xiao, Y.-F.

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable fiber-integrated hybrid plasmonic waveguide on metal film,” IEEE Photon. Technol. Lett. 24(6), 434–436 (2012).
[Crossref]

Yablonovitch, E.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Yan, M.

Yang, R.

Yao, B.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhang, X.-J.

Z.-X. Chen, Z.-J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
[Crossref]

Zhou, L.

Zhou, P.

Q. Lu, C.-L. Zou, D. Chen, P. Zhou, and G. Wu, “Extreme light confinement and low loss in triangle hybrid plasmonic waveguide,” Opt. Commun. 319, 141–146 (2014).
[Crossref]

Zhou, X.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Zi, F.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Zou, C.-L.

Q. Lu, C.-L. Zou, D. Chen, P. Zhou, and G. Wu, “Extreme light confinement and low loss in triangle hybrid plasmonic waveguide,” Opt. Commun. 319, 141–146 (2014).
[Crossref]

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable fiber-integrated hybrid plasmonic waveguide on metal film,” IEEE Photon. Technol. Lett. 24(6), 434–436 (2012).
[Crossref]

Zou, W.

AIP Advances (1)

Z.-X. Chen, Z.-J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett. 97(14), 141106 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

C.-L. Zou, F.-W. Sun, C.-H. Dong, Y.-F. Xiao, X.-F. Ren, L. Lv, X.-D. Chen, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Movable fiber-integrated hybrid plasmonic waveguide on metal film,” IEEE Photon. Technol. Lett. 24(6), 434–436 (2012).
[Crossref]

IEEE Photonics Journal (1)

M. Z. Alam, F. Bahrami, J. S. Aitchison, and M. Mojahedi, “Analysis and optimization of hybrid plasmonic waveguide as a platform for biosensing,” IEEE Photonics Journal 6(4), 1–10 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

B. Olyaeefar and H. Khoshsima, “Low-loss ultra-subwavelength hybrid plasmonic waveguide based on metallic bump structures,” J. Phys. D Appl. Phys. 47(10), 105105 (2014).
[Crossref]

Laser Photon. Rev. (1)

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes,” Laser Photon. Rev. 8(3), 394–408 (2014).
[Crossref]

Nano Lett. (1)

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10(8), 2922–2926 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Opt. Commun. (3)

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

X. Li, X. Guo, D. Wang, and L. Tong, “Propagation losses in gold nanowires,” Opt. Commun. 323, 119–122 (2014).
[Crossref]

Q. Lu, C.-L. Zou, D. Chen, P. Zhou, and G. Wu, “Extreme light confinement and low loss in triangle hybrid plasmonic waveguide,” Opt. Commun. 319, 141–146 (2014).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Sensors (Basel) (1)

L. Zhou, X. Sun, X. Li, and J. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel) 11(12), 6856–6867 (2011).
[Crossref] [PubMed]

Other (2)

D. R. Lide, CRC Handbook of Chemistry and Physics (CRC press, 2004).

J. M. M Z. Alam, J S. Aitchison, and M Mojahedi “Super mode propagation in low index medium,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JThD112 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) and (b) Schematic diagrams of the two HPWG systems in which either (a) a straight nanofiber or (b) a curved nanofiber is attached to the metal film. (c) Cross-sectional structure of the HPWG.
Fig. 2
Fig. 2 Calculated electric field intensity profiles for (a) TM0, (b) TM1, (c) TE0, and (d) TE1 modes of the HPWG.
Fig. 3
Fig. 3 (a) Effective refractive index (real part) and (b) propagation loss of the lowest four modes as a function of nanofiber radius.
Fig. 4
Fig. 4 Electric field intensity distribution along x = 0 for the TM1 mode. (a) R = 0.9 μm; (b) R = 0.8 μm; (c) R = 0.7 μm; (d) R = 0.6 μm.
Fig. 5
Fig. 5 (a) and (b) Electric field intensity pattern in the y-z plane with (a) TE and (b) TM mode excitation in the straight nanofiber system. (c) Electric field intensity along a cut-line at y = 0 for the TM mode excitation.
Fig. 6
Fig. 6 Electric field intensity pattern in the y-z plane with TM dielectric mode excitation in the curved nanofiber system.
Fig. 7
Fig. 7 (a) Experimental setup to characterize the HPWG. (b) Zoom in microscope view of the nanofiber residing on top of a Cu-coated silicon chip. (c) Normalized transmission spectra of the HPWG for TE and TM polarizations. The contact length L is around 1.1 mm.
Fig. 8
Fig. 8 (a) Side-view photograph of a curved nanofiber residing on a Cu film. The mirror image of the nanofiber is formed at the Cu film surface. (b) Top-view photograph of the contact region. (c) Transmission spectra for TE and TM polarizations. The contact length L is around 1.09 mm. (d) Loss of TE and TM transmissions as a function of L. The dots are measurement results and the straight lines are linear fitting lines.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ε( z )= C 1 e α 1 z/2 e i n eff1 k 0 z + C 2 e α 2 z/2 e i n eff2 k 0 z
C 1,2 = 1 2 S E d × H p1,2 z ^ dS
Ε( L )= C 1 2 e α 1 L/2 e i n eff1 k 0 L + C 2 2 e α 2 L/2 e i n eff2 k 0 L
Λ λ 0 / Δ n eff

Metrics