Abstract

Backward stimulated Raman scattering is generated in water, pumped by pre-compressed pulses from a single-cell stimulated Brillouin scattering pulse compressor. The maximum energy efficiency of 9% is achieved by employing a circularly-polarized pump pulse at its energy of 50 mJ, around which point the backward stimulated Raman scattering also exhibits a ring-shaped profile. The correlations between spatial and temporal profiles as well as the intensities of the backward stimulated Raman and the stimulated Brillouin scattering generated from Raman cell indicate that the ring-shaped backward stimulated Raman is driven by intense stimulated Brillouin scattering. We demonstrate the latter process to be much more efficient for the backward Raman generation than the conventional process in which the laser itself pumps a backward stimulated Raman beam. It is shown that a further increase in pump energy leads to a drop in efficiency, combined with a break-up of the ring pattern of backward stimulated Raman. These effects are associated with filament generation above a certain threshold.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pulse-shape dependence of stimulated Brillouin scattering pulse compression to sub-phonon lifetime

Zhaohong Liu, Yulei Wang, Yirui Wang, Sensen Li, Zhenxu Bai, Dianyang Lin, Weiming He, and Zhiwei Lu
Opt. Express 26(5) 5701-5710 (2018)

High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids

Chengyong Feng, Xiaozhen Xu, and Jean-Claude Diels
Opt. Express 25(11) 12421-12434 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near IR,” Proc. IRE 50, 2367 (1962).
  2. G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
    [Crossref]
  3. O. Rahn, M. Maier, and W. Kaiser, “Stimulated Raman, librational, and Brillouins scattering in water,” Opt. Commun. 1, 109–110 (1969).
    [Crossref]
  4. M. Maier, W. Kaiser, and J. A. Giordmaine, “Intense light bursts in the stimulated Raman effect,” Phys. Rev. Lett. 17, 1275–1277 (1966).
    [Crossref]
  5. M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
    [Crossref]
  6. H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, and K. Yoshida, “Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror,” Appl. Opt. 36, 3739–3744 (1997).
    [Crossref] [PubMed]
  7. C. Feng, X. Xu, and J.-C. Diels, “Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm,” Opt. Lett. 39, 3367–3370 (2014).
    [Crossref] [PubMed]
  8. M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1, 169–172 (1969).
    [Crossref]
  9. D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. 178, 11–17 (1969).
    [Crossref]
  10. Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
    [Crossref]
  11. R. R. Alfano and G. A. Zawadzkas, “Observation of backward-stimulated Raman scattering generated by picosecond laser pulses in liquids,” Phys. Rev. A 9, 822–824 (1974).
    [Crossref]
  12. G. G. Bret and M. M. Denariez, “Stimulated Raman effect in acetone and acetone-carbon-disulfide mixtures,” Appl. Phys. Lett. 8, 151–154 (1966).
    [Crossref]
  13. R. G. Brewer, J. R. Lifsitz, E. Garmire, R. Y. Chiao, and C. H. Townes, “Small-scale trapped filaments in intense laser beams,” Phys. Rev. 166, 326–331 (1968).
    [Crossref]
  14. R. Chevalier, A. Sokolovskaia, N. Tcherniega, and G. Rivoire, “Stimulated backward Raman scattering excited in the picosecond range: high efficiency conversions,” Opt. Commun. 82, 117–122 (1991).
    [Crossref]
  15. J.-Z. Zhang, G. Chen, and R. K. Chang, “Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single liquid droplet: input laser linewidth effects,” J. Opt. Soc. Am. B 7, 108–115 (1990).
    [Crossref]
  16. D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, “Pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Phys. Rev. A 80, 033808 (2009).
    [Crossref]
  17. J. Shi, X. Chen, M. Ouyang, W. Gong, Y. Su, and D. Liu, “Theoretical investigation on the pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Appl. Phys. B 106, 445–451 (2012).
    [Crossref]
  18. X. Xu, C. Feng, and J.-C. Diels, “Optimizing sub-ns pulse compression for high energy application,” Opt. Express 22, 13904–13915 (2014).
    [Crossref] [PubMed]
  19. X. Xu and J.-C. Diels, “Stable single axial mode operation of injection-seeded Q-switched Nd:YAGs laser by real-time resonance tracking method,” Appl. Phys. B 114, 579–584 (2014).
    [Crossref]
  20. V. Kmetik, H. Fiedorowicz, A. A. Andreev, K. J. Witte, H. Daido, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Reliable stimulated Brillouin scattering compression of Nd:YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz,” Appl. Opt. 37, 7085–7090 (1998).
    [Crossref]
  21. D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated brillouin scattering in transparent and absorbing media: Determination of phonon lifetimes,” Phys. Rev. B 1, 31–43 (1970).
    [Crossref]
  22. I. A. Walmsley and M. G. Raymer, “Experimental study of the macroscopic quantum fluctuations of partially coherent stimulated raman scattering,” Phys. Rev. A 33, 382–390 (1986).
    [Crossref] [PubMed]
  23. D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
    [Crossref]
  24. R. W. Boyd, Nonlinear Optics (Academic, 2008), 3rd ed.
  25. I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
    [Crossref]

2014 (3)

2012 (1)

J. Shi, X. Chen, M. Ouyang, W. Gong, Y. Su, and D. Liu, “Theoretical investigation on the pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Appl. Phys. B 106, 445–451 (2012).
[Crossref]

2009 (1)

D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, “Pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Phys. Rev. A 80, 033808 (2009).
[Crossref]

1999 (2)

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[Crossref]

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[Crossref]

1998 (1)

1997 (1)

1991 (1)

R. Chevalier, A. Sokolovskaia, N. Tcherniega, and G. Rivoire, “Stimulated backward Raman scattering excited in the picosecond range: high efficiency conversions,” Opt. Commun. 82, 117–122 (1991).
[Crossref]

1990 (1)

1986 (1)

I. A. Walmsley and M. G. Raymer, “Experimental study of the macroscopic quantum fluctuations of partially coherent stimulated raman scattering,” Phys. Rev. A 33, 382–390 (1986).
[Crossref] [PubMed]

1974 (1)

R. R. Alfano and G. A. Zawadzkas, “Observation of backward-stimulated Raman scattering generated by picosecond laser pulses in liquids,” Phys. Rev. A 9, 822–824 (1974).
[Crossref]

1970 (1)

D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated brillouin scattering in transparent and absorbing media: Determination of phonon lifetimes,” Phys. Rev. B 1, 31–43 (1970).
[Crossref]

1969 (4)

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[Crossref]

M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1, 169–172 (1969).
[Crossref]

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. 178, 11–17 (1969).
[Crossref]

O. Rahn, M. Maier, and W. Kaiser, “Stimulated Raman, librational, and Brillouins scattering in water,” Opt. Commun. 1, 109–110 (1969).
[Crossref]

1968 (1)

R. G. Brewer, J. R. Lifsitz, E. Garmire, R. Y. Chiao, and C. H. Townes, “Small-scale trapped filaments in intense laser beams,” Phys. Rev. 166, 326–331 (1968).
[Crossref]

1966 (2)

M. Maier, W. Kaiser, and J. A. Giordmaine, “Intense light bursts in the stimulated Raman effect,” Phys. Rev. Lett. 17, 1275–1277 (1966).
[Crossref]

G. G. Bret and M. M. Denariez, “Stimulated Raman effect in acetone and acetone-carbon-disulfide mixtures,” Appl. Phys. Lett. 8, 151–154 (1966).
[Crossref]

1965 (1)

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[Crossref]

1962 (2)

E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near IR,” Proc. IRE 50, 2367 (1962).

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Alfano, R. R.

R. R. Alfano and G. A. Zawadzkas, “Observation of backward-stimulated Raman scattering generated by picosecond laser pulses in liquids,” Phys. Rev. A 9, 822–824 (1974).
[Crossref]

Andreev, A. A.

Bloembergen, N.

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008), 3rd ed.

Bret, G. G.

G. G. Bret and M. M. Denariez, “Stimulated Raman effect in acetone and acetone-carbon-disulfide mixtures,” Appl. Phys. Lett. 8, 151–154 (1966).
[Crossref]

Brewer, R. G.

R. G. Brewer, J. R. Lifsitz, E. Garmire, R. Y. Chiao, and C. H. Townes, “Small-scale trapped filaments in intense laser beams,” Phys. Rev. 166, 326–331 (1968).
[Crossref]

Chang, R. K.

Chen, G.

Chen, X.

J. Shi, X. Chen, M. Ouyang, W. Gong, Y. Su, and D. Liu, “Theoretical investigation on the pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Appl. Phys. B 106, 445–451 (2012).
[Crossref]

D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, “Pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Phys. Rev. A 80, 033808 (2009).
[Crossref]

Chevalier, R.

R. Chevalier, A. Sokolovskaia, N. Tcherniega, and G. Rivoire, “Stimulated backward Raman scattering excited in the picosecond range: high efficiency conversions,” Opt. Commun. 82, 117–122 (1991).
[Crossref]

Chiao, R. Y.

R. G. Brewer, J. R. Lifsitz, E. Garmire, R. Y. Chiao, and C. H. Townes, “Small-scale trapped filaments in intense laser beams,” Phys. Rev. 166, 326–331 (1968).
[Crossref]

Colles, M. J.

M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1, 169–172 (1969).
[Crossref]

Daido, H.

Denariez, M. M.

G. G. Bret and M. M. Denariez, “Stimulated Raman effect in acetone and acetone-carbon-disulfide mixtures,” Appl. Phys. Lett. 8, 151–154 (1966).
[Crossref]

Diels, J.-C.

Eckhardt, G.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Feng, C.

Fiedorowicz, H.

Fujita, H.

Garmire, E.

R. G. Brewer, J. R. Lifsitz, E. Garmire, R. Y. Chiao, and C. H. Townes, “Small-scale trapped filaments in intense laser beams,” Phys. Rev. 166, 326–331 (1968).
[Crossref]

Giordmaine, J. A.

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[Crossref]

M. Maier, W. Kaiser, and J. A. Giordmaine, “Intense light bursts in the stimulated Raman effect,” Phys. Rev. Lett. 17, 1275–1277 (1966).
[Crossref]

Gong, W.

J. Shi, X. Chen, M. Ouyang, W. Gong, Y. Su, and D. Liu, “Theoretical investigation on the pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Appl. Phys. B 106, 445–451 (2012).
[Crossref]

He, X.

D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, “Pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Phys. Rev. A 80, 033808 (2009).
[Crossref]

Hellwarth, R. W.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Hogervorst, W.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[Crossref]

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[Crossref]

Kaiser, W.

D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated brillouin scattering in transparent and absorbing media: Determination of phonon lifetimes,” Phys. Rev. B 1, 31–43 (1970).
[Crossref]

O. Rahn, M. Maier, and W. Kaiser, “Stimulated Raman, librational, and Brillouins scattering in water,” Opt. Commun. 1, 109–110 (1969).
[Crossref]

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[Crossref]

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. 178, 11–17 (1969).
[Crossref]

M. Maier, W. Kaiser, and J. A. Giordmaine, “Intense light bursts in the stimulated Raman effect,” Phys. Rev. Lett. 17, 1275–1277 (1966).
[Crossref]

Kmetik, V.

Lifsitz, J. R.

R. G. Brewer, J. R. Lifsitz, E. Garmire, R. Y. Chiao, and C. H. Townes, “Small-scale trapped filaments in intense laser beams,” Phys. Rev. 166, 326–331 (1968).
[Crossref]

Liu, D.

J. Shi, X. Chen, M. Ouyang, W. Gong, Y. Su, and D. Liu, “Theoretical investigation on the pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Appl. Phys. B 106, 445–451 (2012).
[Crossref]

D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, “Pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Phys. Rev. A 80, 033808 (2009).
[Crossref]

Liu, J.

D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, “Pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Phys. Rev. A 80, 033808 (2009).
[Crossref]

Maier, M.

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. 178, 11–17 (1969).
[Crossref]

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[Crossref]

O. Rahn, M. Maier, and W. Kaiser, “Stimulated Raman, librational, and Brillouins scattering in water,” Opt. Commun. 1, 109–110 (1969).
[Crossref]

M. Maier, W. Kaiser, and J. A. Giordmaine, “Intense light bursts in the stimulated Raman effect,” Phys. Rev. Lett. 17, 1275–1277 (1966).
[Crossref]

Majewski, W.

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[Crossref]

McClung, F. J.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Nakatsuka, M.

Neshev, D.

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[Crossref]

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[Crossref]

Ng, W. K.

E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near IR,” Proc. IRE 50, 2367 (1962).

Ouyang, M.

J. Shi, X. Chen, M. Ouyang, W. Gong, Y. Su, and D. Liu, “Theoretical investigation on the pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Appl. Phys. B 106, 445–451 (2012).
[Crossref]

D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, “Pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Phys. Rev. A 80, 033808 (2009).
[Crossref]

Pohl, D.

D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated brillouin scattering in transparent and absorbing media: Determination of phonon lifetimes,” Phys. Rev. B 1, 31–43 (1970).
[Crossref]

Rahn, O.

O. Rahn, M. Maier, and W. Kaiser, “Stimulated Raman, librational, and Brillouins scattering in water,” Opt. Commun. 1, 109–110 (1969).
[Crossref]

Raymer, M. G.

I. A. Walmsley and M. G. Raymer, “Experimental study of the macroscopic quantum fluctuations of partially coherent stimulated raman scattering,” Phys. Rev. A 33, 382–390 (1986).
[Crossref] [PubMed]

Rivoire, G.

R. Chevalier, A. Sokolovskaia, N. Tcherniega, and G. Rivoire, “Stimulated backward Raman scattering excited in the picosecond range: high efficiency conversions,” Opt. Commun. 82, 117–122 (1991).
[Crossref]

Schwarz, S. E.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Shen, Y. R.

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[Crossref]

Shi, J.

J. Shi, X. Chen, M. Ouyang, W. Gong, Y. Su, and D. Liu, “Theoretical investigation on the pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Appl. Phys. B 106, 445–451 (2012).
[Crossref]

D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, “Pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Phys. Rev. A 80, 033808 (2009).
[Crossref]

Sokolovskaia, A.

R. Chevalier, A. Sokolovskaia, N. Tcherniega, and G. Rivoire, “Stimulated backward Raman scattering excited in the picosecond range: high efficiency conversions,” Opt. Commun. 82, 117–122 (1991).
[Crossref]

Su, Y.

J. Shi, X. Chen, M. Ouyang, W. Gong, Y. Su, and D. Liu, “Theoretical investigation on the pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Appl. Phys. B 106, 445–451 (2012).
[Crossref]

Tcherniega, N.

R. Chevalier, A. Sokolovskaia, N. Tcherniega, and G. Rivoire, “Stimulated backward Raman scattering excited in the picosecond range: high efficiency conversions,” Opt. Commun. 82, 117–122 (1991).
[Crossref]

Townes, C. H.

R. G. Brewer, J. R. Lifsitz, E. Garmire, R. Y. Chiao, and C. H. Townes, “Small-scale trapped filaments in intense laser beams,” Phys. Rev. 166, 326–331 (1968).
[Crossref]

Ubachs, W.

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[Crossref]

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[Crossref]

Velchev, I.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[Crossref]

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[Crossref]

von der Linde, D.

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. 178, 11–17 (1969).
[Crossref]

Walmsley, I. A.

I. A. Walmsley and M. G. Raymer, “Experimental study of the macroscopic quantum fluctuations of partially coherent stimulated raman scattering,” Phys. Rev. A 33, 382–390 (1986).
[Crossref] [PubMed]

Weiner, D.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Witte, K. J.

Woodbury, E. J.

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near IR,” Proc. IRE 50, 2367 (1962).

Xu, X.

Yamanaka, T.

Yoshida, H.

Yoshida, K.

Zawadzkas, G. A.

R. R. Alfano and G. A. Zawadzkas, “Observation of backward-stimulated Raman scattering generated by picosecond laser pulses in liquids,” Phys. Rev. A 9, 822–824 (1974).
[Crossref]

Zhang, J.-Z.

Appl. Opt. (2)

Appl. Phys. B (3)

D. Neshev, I. Velchev, W. Majewski, W. Hogervorst, and W. Ubachs, “SBS pulse compression to 200ps in a compact single-cell setup,” Appl. Phys. B 68, 671–675 (1999).
[Crossref]

J. Shi, X. Chen, M. Ouyang, W. Gong, Y. Su, and D. Liu, “Theoretical investigation on the pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Appl. Phys. B 106, 445–451 (2012).
[Crossref]

X. Xu and J.-C. Diels, “Stable single axial mode operation of injection-seeded Q-switched Nd:YAGs laser by real-time resonance tracking method,” Appl. Phys. B 114, 579–584 (2014).
[Crossref]

Appl. Phys. Lett. (1)

G. G. Bret and M. M. Denariez, “Stimulated Raman effect in acetone and acetone-carbon-disulfide mixtures,” Appl. Phys. Lett. 8, 151–154 (1966).
[Crossref]

IEEE J. Quantum Electron. (1)

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812–1816 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

R. Chevalier, A. Sokolovskaia, N. Tcherniega, and G. Rivoire, “Stimulated backward Raman scattering excited in the picosecond range: high efficiency conversions,” Opt. Commun. 82, 117–122 (1991).
[Crossref]

M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1, 169–172 (1969).
[Crossref]

O. Rahn, M. Maier, and W. Kaiser, “Stimulated Raman, librational, and Brillouins scattering in water,” Opt. Commun. 1, 109–110 (1969).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (4)

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[Crossref]

D. von der Linde, M. Maier, and W. Kaiser, “Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses,” Phys. Rev. 178, 11–17 (1969).
[Crossref]

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965).
[Crossref]

R. G. Brewer, J. R. Lifsitz, E. Garmire, R. Y. Chiao, and C. H. Townes, “Small-scale trapped filaments in intense laser beams,” Phys. Rev. 166, 326–331 (1968).
[Crossref]

Phys. Rev. A (3)

R. R. Alfano and G. A. Zawadzkas, “Observation of backward-stimulated Raman scattering generated by picosecond laser pulses in liquids,” Phys. Rev. A 9, 822–824 (1974).
[Crossref]

D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, “Pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water,” Phys. Rev. A 80, 033808 (2009).
[Crossref]

I. A. Walmsley and M. G. Raymer, “Experimental study of the macroscopic quantum fluctuations of partially coherent stimulated raman scattering,” Phys. Rev. A 33, 382–390 (1986).
[Crossref] [PubMed]

Phys. Rev. B (1)

D. Pohl and W. Kaiser, “Time-resolved investigations of stimulated brillouin scattering in transparent and absorbing media: Determination of phonon lifetimes,” Phys. Rev. B 1, 31–43 (1970).
[Crossref]

Phys. Rev. Lett. (2)

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

M. Maier, W. Kaiser, and J. A. Giordmaine, “Intense light bursts in the stimulated Raman effect,” Phys. Rev. Lett. 17, 1275–1277 (1966).
[Crossref]

Proc. IRE (1)

E. J. Woodbury and W. K. Ng, “Ruby laser operation in the near IR,” Proc. IRE 50, 2367 (1962).

Other (1)

R. W. Boyd, Nonlinear Optics (Academic, 2008), 3rd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Spatial pulse-width distributions of the pump generated in the first cell, at the energies of 10 and 50 mJ; (b) Energy and efficiency of the SBS cell generating the pump pulse, as a function of the primary Nd:YAG pulse energy
Fig. 2
Fig. 2 (a) Schematic of experimental setup for SRS generation. The combination of a half-wave plate HW and a thin film polarizer TP1 is used to control the energy of the pulse (the pulse radial profile is I(r) = exp(−2r4/w4) with w = 15 mm) focused by the lens L1 (effective focal length of 2.2 m in water) into a first SBS cell. The quarter-wave plate QW1 makes the SBS p-polarized to transmit through the thin film polarizer TP2, to provide a pump for the second (SRS) cell. This pump is focused (lens L2 of 50 cm focal length) onto the 54 cm Raman cell via the dichroic mirror DM. Its polarization is controlled by the quarter-wave plate QW2. Different color filters (CF) are used to block the unwanted beams after both backward SRS and forward SRS are collected by lens L3 and L4, respectively. Throughout the paper, “backward SRS” refers to the propagation of the Raman radiation towards the left of the second cell. (b) Ring-shaped backward SRS profile at the pump energy of 50 mJ. (c) Typical forward SRS profile with the pump energy of more than 50 mJ.
Fig. 3
Fig. 3 SBS output energy (left scale) and the corresponding efficiency (right scale) from the short SRS generating cell
Fig. 4
Fig. 4 (a) SRS output energies at both linear and circular pump polarization; (b) Relative Standard Deviation (RSD) of SRS energy at circular pump polarization. Forward and backward denote the SRS propagation direction with respect to the pump; Linear and circular refer to the pump polarization.
Fig. 5
Fig. 5 Spatial profiles of backward SRS and SBS taken with a digital camera at different pump energies; (a) and (d), 10 mJ; (b) and (e), 50 mJ; (c) and (f), 100 mJ; Fringes next to SBS profile are due to the leakage of back-scattering through the edge of the dichroic mirror.
Fig. 6
Fig. 6 Spatial pulse-width distributions: pulse-width of SBS and that of backward SRS at the corresponding positions at the pump energy of 50 mJ. Due to the limited temporal resolution of the pulse detection setup (140 ps rise-time), the actual SRS pulse-width could be much shorter than indicated in the figure.
Fig. 7
Fig. 7 Evolution of filament generation in water under different pump energies; (a) 2 mJ; (b) 10 mJ; (c) 50 mJ; (d) 100 mJ; The pump beam propagates from left to right.

Metrics