Abstract

Based on optical frequency comb (OFC), a photonic-assisted ultra-broadband microwave signal down-converting method is proposed. In the proposed scheme, microwave signal at 2~20GHz can be down-converted to 0~1GHz intermediate frequency (IF) signals by an OFC of 2GHz frequency space at different order of comb lines. By slightly switching the frequency space of OFC, the frequency of the signal to be measured can be retrieved through the frequency shift of the down-converted IF signal. The validity of this proposed unknown signal detection method is verified by the experiments. The proposed method is proven to be flexible, low-cost and easily implemented, which requires only a low-frequency tunable microwave source while provides ultra-broadband down-converting frequency range.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical frequency comb based multi-band microwave frequency conversion for satellite applications

Xinwu Yang, Kun Xu, Jie Yin, Yitang Dai, Feifei Yin, Jianqiang Li, Hua Lu, Tao Liu, and Yuefeng Ji
Opt. Express 22(1) 869-877 (2014)

Cross-referenced deadband-free microwave frequency measurement with cascaded-four-wave-mixing-based photonic harmonic down-conversion

Xinhai Zou, Shangjian Zhang, Heng Wang, Yangxue Ma, Xuyan Zhang, Zhiyao Zhang, and Yong Liu
Opt. Express 27(17) 23714-23724 (2019)

All-optical and broadband microwave fundamental/sub-harmonic I/Q down-converters

Yongsheng Gao, Aijun Wen, Wei Jiang, Yangyu Fan, and You He
Opt. Express 26(6) 7336-7350 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. P. H. Gruchala and M. Czyzewski, “The instantaneous frequency measurement receiver in the complex electromagnetic environment,” in Proc. Int. Conf. Microwave, Radar, and Wireless Communications (MIKON2004), May 2004, 1, 155–158.
    [Crossref]
  4. L. Po, Z. Yue, and C. Z. Ping, “Design and implementation of a wideband digital reconnaissance receiver, ” in Proc. Int. Conf. Radar (IET2009), April 2009, pp. 1–5.
  5. G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
    [Crossref]
  6. J. Ye and S. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, 2005).
  7. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
    [Crossref] [PubMed]
  8. X. J. Xie, Y. T. Dai, K. Xu, J. Niu, R. X. Wang, L. Yan, and J. T. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics Journal 4(4), 1196–1202 (2012).
    [Crossref]
  9. G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microw. Theory Tech. 43(9), 2318–2323 (1995).
    [Crossref]
  10. A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver application,” IEEE Trans. Microw. Theory Tech. 43(9), 2311–2317 (1995).
    [Crossref]
  11. C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Bums, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8(9), 1166–1168 (1996).
    [Crossref]
  12. A. Karim and J. Devenport, “High dynamic range microwave photonic links for RF signal transport and RF-IF conversion,” J. Lightwave Technol. 26(15), 2718–2724 (2008).
    [Crossref]
  13. V. R. Pagán, B. M. Haas, and T. E. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express 19(2), 883–895 (2011).
    [Crossref] [PubMed]
  14. A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, “Wide-band electrooptic intensity modulator frequency response measurement using an optical heterodyne down-conversion technique,” IEEE Trans. Microw. Theory Tech. 54(1), 240–246 (2006).
    [Crossref]
  15. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  16. F. Ferdous, D. E. Leaird, C. B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34(24), 3875–3877 (2009).
    [PubMed]
  17. J. D. Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave Technol. 29(20), 3091–3098 (2011).
    [Crossref]
  18. Y. G. Zhao, X. D. Pang, L. Deng, X. B. Yu, X. P. Zheng, and I. T. Monroy, “Ultra-broadband photonic harmonic mixer based on optical comb generation,” IEEE Photon. Technol. Lett. 24(7), 620 (2012).
    [Crossref]
  19. A. O. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, B. P. Kuo, N. Alic, and S. Radic, “Photonic preprocessor for analog-to-digital-converter using a cavity-less pulse source,” Opt. Express 20(26), B419–B427 (2012).
    [Crossref] [PubMed]
  20. X. Yang, K. Xu, J. Yin, Y. Dai, F. Yin, J. Li, H. Lu, T. Liu, and Y. Ji, “Optical frequency comb based multi-band microwave frequency conversion for satellite applications,” Opt. Express 22(1), 869–877 (2014).
    [Crossref] [PubMed]
  21. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
    [Crossref]
  22. C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008).
    [Crossref] [PubMed]

2014 (1)

2012 (3)

Y. G. Zhao, X. D. Pang, L. Deng, X. B. Yu, X. P. Zheng, and I. T. Monroy, “Ultra-broadband photonic harmonic mixer based on optical comb generation,” IEEE Photon. Technol. Lett. 24(7), 620 (2012).
[Crossref]

A. O. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, B. P. Kuo, N. Alic, and S. Radic, “Photonic preprocessor for analog-to-digital-converter using a cavity-less pulse source,” Opt. Express 20(26), B419–B427 (2012).
[Crossref] [PubMed]

X. J. Xie, Y. T. Dai, K. Xu, J. Niu, R. X. Wang, L. Yan, and J. T. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics Journal 4(4), 1196–1202 (2012).
[Crossref]

2011 (2)

2010 (1)

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

2009 (2)

2008 (3)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (1)

A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, “Wide-band electrooptic intensity modulator frequency response measurement using an optical heterodyne down-conversion technique,” IEEE Trans. Microw. Theory Tech. 54(1), 240–246 (2006).
[Crossref]

2005 (1)

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

2002 (1)

1996 (1)

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Bums, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8(9), 1166–1168 (1996).
[Crossref]

1995 (2)

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microw. Theory Tech. 43(9), 2318–2323 (1995).
[Crossref]

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver application,” IEEE Trans. Microw. Theory Tech. 43(9), 2311–2317 (1995).
[Crossref]

Alic, N.

Alter, J. J.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Ataie, V.

Bagnell, M.

Bums, W. K.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Bums, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8(9), 1166–1168 (1996).
[Crossref]

Burns, W. K.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microw. Theory Tech. 43(9), 2318–2323 (1995).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Crnkovich, J. G.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Dai, Y.

Dai, Y. T.

X. J. Xie, Y. T. Dai, K. Xu, J. Niu, R. X. Wang, L. Yan, and J. T. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics Journal 4(4), 1196–1202 (2012).
[Crossref]

de Graaf, J. J. W.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Delfyett, P. J.

Deng, L.

Y. G. Zhao, X. D. Pang, L. Deng, X. B. Yu, X. P. Zheng, and I. T. Monroy, “Ultra-broadband photonic harmonic mixer based on optical comb generation,” IEEE Photon. Technol. Lett. 24(7), 620 (2012).
[Crossref]

Devenport, J.

Esman, R. D.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microw. Theory Tech. 43(9), 2318–2323 (1995).
[Crossref]

Evins, J. B.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Fairburn, M.

A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, “Wide-band electrooptic intensity modulator frequency response measurement using an optical heterodyne down-conversion technique,” IEEE Trans. Microw. Theory Tech. 54(1), 240–246 (2006).
[Crossref]

Ferdous, F.

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microw. Theory Tech. 43(9), 2318–2323 (1995).
[Crossref]

Haas, B. M.

Habicht, W.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Hagewood, S. M.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Hamidi, E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Hilterbrick, C. L.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Howerton, M. M.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microw. Theory Tech. 43(9), 2318–2323 (1995).
[Crossref]

Hrin, G. P.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Huang, C. B.

Jaeger, N. A. F.

A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, “Wide-band electrooptic intensity modulator frequency response measurement using an optical heterodyne down-conversion technique,” IEEE Trans. Microw. Theory Tech. 54(1), 240–246 (2006).
[Crossref]

Ji, Y.

Karim, A.

Knight, G. A.

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver application,” IEEE Trans. Microw. Theory Tech. 43(9), 2311–2317 (1995).
[Crossref]

Kuo, B. P.

Lam, A. K. M.

A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, “Wide-band electrooptic intensity modulator frequency response measurement using an optical heterodyne down-conversion technique,” IEEE Trans. Microw. Theory Tech. 54(1), 240–246 (2006).
[Crossref]

Leaird, D. E.

Lessin, S. A.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Li, J.

Lin, J. T.

X. J. Xie, Y. T. Dai, K. Xu, J. Niu, R. X. Wang, L. Yan, and J. T. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics Journal 4(4), 1196–1202 (2012).
[Crossref]

Lindsay, A. C.

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver application,” IEEE Trans. Microw. Theory Tech. 43(9), 2311–2317 (1995).
[Crossref]

Liu, L.

Liu, T.

Lu, H.

Moeller, R. P.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microw. Theory Tech. 43(9), 2318–2323 (1995).
[Crossref]

Monroy, I. T.

Y. G. Zhao, X. D. Pang, L. Deng, X. B. Yu, X. P. Zheng, and I. T. Monroy, “Ultra-broadband photonic harmonic mixer based on optical comb generation,” IEEE Photon. Technol. Lett. 24(7), 620 (2012).
[Crossref]

Murphy, T. E.

Myslivets, E.

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Niu, J.

X. J. Xie, Y. T. Dai, K. Xu, J. Niu, R. X. Wang, L. Yan, and J. T. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics Journal 4(4), 1196–1202 (2012).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Orazi, R. J.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Bums, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8(9), 1166–1168 (1996).
[Crossref]

Pagán, V. R.

Pang, X. D.

Y. G. Zhao, X. D. Pang, L. Deng, X. B. Yu, X. P. Zheng, and I. T. Monroy, “Ultra-broadband photonic harmonic mixer based on optical comb generation,” IEEE Photon. Technol. Lett. 24(7), 620 (2012).
[Crossref]

Pappert, S. A.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Bums, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8(9), 1166–1168 (1996).
[Crossref]

Park, S. G.

Radic, S.

Rodriguez, J. D.

Schiller, S.

Sun, C. K.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Bums, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8(9), 1166–1168 (1996).
[Crossref]

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Tavik, G. C.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Tong, Z.

Wang, R. X.

X. J. Xie, Y. T. Dai, K. Xu, J. Niu, R. X. Wang, L. Yan, and J. T. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics Journal 4(4), 1196–1202 (2012).
[Crossref]

Weiner, A. M.

Wiberg, A. O.

Williams, C.

Williams, K. J.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microw. Theory Tech. 43(9), 2318–2323 (1995).
[Crossref]

Winnall, S. T.

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver application,” IEEE Trans. Microw. Theory Tech. 43(9), 2311–2317 (1995).
[Crossref]

Wu, D. C.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

Xie, X. J.

X. J. Xie, Y. T. Dai, K. Xu, J. Niu, R. X. Wang, L. Yan, and J. T. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics Journal 4(4), 1196–1202 (2012).
[Crossref]

Xu, K.

X. Yang, K. Xu, J. Yin, Y. Dai, F. Yin, J. Li, H. Lu, T. Liu, and Y. Ji, “Optical frequency comb based multi-band microwave frequency conversion for satellite applications,” Opt. Express 22(1), 869–877 (2014).
[Crossref] [PubMed]

X. J. Xie, Y. T. Dai, K. Xu, J. Niu, R. X. Wang, L. Yan, and J. T. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics Journal 4(4), 1196–1202 (2012).
[Crossref]

Yan, L.

X. J. Xie, Y. T. Dai, K. Xu, J. Niu, R. X. Wang, L. Yan, and J. T. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics Journal 4(4), 1196–1202 (2012).
[Crossref]

Yang, X.

Yao, J. P.

Yin, F.

Yin, J.

Yu, X. B.

Y. G. Zhao, X. D. Pang, L. Deng, X. B. Yu, X. P. Zheng, and I. T. Monroy, “Ultra-broadband photonic harmonic mixer based on optical comb generation,” IEEE Photon. Technol. Lett. 24(7), 620 (2012).
[Crossref]

Zhao, Y. G.

Y. G. Zhao, X. D. Pang, L. Deng, X. B. Yu, X. P. Zheng, and I. T. Monroy, “Ultra-broadband photonic harmonic mixer based on optical comb generation,” IEEE Photon. Technol. Lett. 24(7), 620 (2012).
[Crossref]

Zheng, X. P.

Y. G. Zhao, X. D. Pang, L. Deng, X. B. Yu, X. P. Zheng, and I. T. Monroy, “Ultra-broadband photonic harmonic mixer based on optical comb generation,” IEEE Photon. Technol. Lett. 24(7), 620 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (2)

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Bums, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8(9), 1166–1168 (1996).
[Crossref]

Y. G. Zhao, X. D. Pang, L. Deng, X. B. Yu, X. P. Zheng, and I. T. Monroy, “Ultra-broadband photonic harmonic mixer based on optical comb generation,” IEEE Photon. Technol. Lett. 24(7), 620 (2012).
[Crossref]

IEEE Photonics Journal (1)

X. J. Xie, Y. T. Dai, K. Xu, J. Niu, R. X. Wang, L. Yan, and J. T. Lin, “Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators,” IEEE Photonics Journal 4(4), 1196–1202 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (5)

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microw. Theory Tech. 43(9), 2318–2323 (1995).
[Crossref]

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver application,” IEEE Trans. Microw. Theory Tech. 43(9), 2311–2317 (1995).
[Crossref]

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005).
[Crossref]

A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, “Wide-band electrooptic intensity modulator frequency response measurement using an optical heterodyne down-conversion technique,” IEEE Trans. Microw. Theory Tech. 54(1), 240–246 (2006).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Other (3)

P. H. Gruchala and M. Czyzewski, “The instantaneous frequency measurement receiver in the complex electromagnetic environment,” in Proc. Int. Conf. Microwave, Radar, and Wireless Communications (MIKON2004), May 2004, 1, 155–158.
[Crossref]

L. Po, Z. Yue, and C. Z. Ping, “Design and implementation of a wideband digital reconnaissance receiver, ” in Proc. Int. Conf. Radar (IET2009), April 2009, pp. 1–5.

J. Ye and S. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of photonic system of down-converting microwave signals. (b) Basic scheme of the method that is used to derive out the frequency of received microwave signals:
Fig. 2
Fig. 2 Schematic diagram of four down-converting cases.
Fig. 3
Fig. 3 Experimental setup of the photonics down-converting system. CW: continuous laswer, IM: intensity modulator, PM: phase modulator, PS: microwave phase shifter, PA: microwave power amplifier, PD: photo detector, EF: low-pass electrical filter
Fig. 4
Fig. 4 Measured IF signals that different received RF signals down-convert to. (a) f r e = 2.5 G H z , (b) f r e = 7.6 G H z , (c) f r e = 13.6 G H z , (d) f r e = 19.5 G H z
Fig. 5
Fig. 5 Measured SNRs of IF signals that received microwave signals downconvert to, and the frequency range of received RF signals is 2~20GHz.
Fig. 6
Fig. 6 Measured IF signals that verify the rightness of frequency-calculating method. (a) f r e = 14.7 G H z , FS of OFC1 = 2 G H z , FS of OFC2 = 2.01 G H z . (b) f r e = 15.6 G H z , FS of OFC1 = 2 G H z , FS of OFC2 = 2.01 G H z , (c) f r e = 14.05 G H z , FS of OFC1 = 2 G H z , FS of OFC2 = 2.01 G H z , (d) f r e = 15.05 G H z , FS of OFC1 = 2 G H z , FS of OFC2 = 2.01 G H z .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E a ( t ) P c e j ω c t .
E b P c 2 e j π v s V π cos ( ω s t ) + c . c .
E c n = 0 N 1 P n e j ( ω n t + ϕ n ) + c . c .
E d n = 0 N 1 P n e j ( ω n t + ϕ n ) + P c 2 e j π v s V π cos ( ω s t ) + c . c .
i ( t ) R | E d ( t ) | 2 .
i I F 2 R P n 1 P c J m ( π v s V π ) e j ( ω I F + ϕ n 1 )
ω I F [ 0 , Δ ω 2 ]
ω s = n 1 Δ ω + ω I F .
ω s = s i g n ( ω I F 1 ω I F 2 ) ( ω I F 1 + ω I F 1 ω I F 2 Δ ω ' Δ ω )
ω s = ω I F 1 + ω I F 1 + ω I F 2 Δ ω ' Δ ω
ω s = Δ ω ( ω I F 1 + ω I F 2 ) + Δ ω ' Δ ω ' Δ ω ω I F 1

Metrics