Abstract

We experimentally demonstrate the first few-mode space division multiplexed (SDM) transmission of real-time 10Gb/s Ethernet (10GbE) traffic using commercial small form-factor pluggable SFP + transceivers without coherent detection or multiple input multiple output digital signal processing (MIMO-DSP) over 0.5km elliptical-core few-mode-fiber, achieving <-26dB crosstalk between LP11e and LP11o modes at 1.3μm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Weakly-coupled 7-core-2-LP-mode transmission using commercial SFP + transceivers enabled by all-fiber spatial multiplexer and demultiplexer

Yuyang Gao, Jian Cui, Junchi Jia, Dawei Ge, Chunyan Du, Yichi Zhang, Huang Yu, Zhengbin Li, Yongqi He, Zhangyuan Chen, and Juhao Li
Opt. Express 27(11) 16271-16280 (2019)

Weakly-coupled 4-mode step-index FMF and demonstration of IM/DD MDM transmission

Tao Hu, Juhao Li, Dawei Ge, Zhongying Wu, Yu Tian, Lei Shen, Yaping Liu, Su Chen, Zhengbin Li, Yongqi He, and Zhangyuan Chen
Opt. Express 26(7) 8356-8363 (2018)

6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization

Sebastian Randel, Roland Ryf, Alberto Sierra, Peter J. Winzer, Alan H. Gnauck, Cristian A. Bolle, René-Jean Essiambre, David W. Peckham, Alan McCurdy, and Robert Lingle
Opt. Express 19(17) 16697-16707 (2011)

References

  • View by:
  • |
  • |
  • |

  1. L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34(5), 52–63 (2014).
    [Crossref]
  2. S. Yan, et al., “First demonstration of all-optical programmable SDM/TDM intra data centre and WDM inter-DCN communication,” in European Conference on Optical Communications (ECOC), Cannes, France, Sept. (2014), paper PD1.2.
    [Crossref]
  3. Z. Zhu and S. Zhong, “OvS: a distributed and WDM/SDM enabled optical switching fabric for intra-datacenter networking,” in Photonics in Switching, San Diego, CA, July (2014), paper PW3B.2.
  4. S. Jain, V. J. F. Rancaño, T. C. May-Smith, P. Petropoulos, J. K. Sahu, and D. J. Richardson, “Multi-element fiber technology for space-division multiplexing applications,” Opt. Express 22(4), 3787–3796 (2014).
    [Crossref] [PubMed]
  5. E. Ip, et al., “146λ×6×19-Gbaud wavelength- and mode-division multiplexed transmission over 10×50-km spans of few-mode fiber with a gain-equalized few-mode EDFA” in Optical Fiber Conference (OFC), Los Angeles, CA, Mar. (2013), paper PDP5A.2.
  6. N. Cvijetic, E. Ip, N. Prasad, M.-J. Li, and T. Wang, “Experimental time and frequency domain MIMO channel matrix characterization versus distance for 6×28Gbaud QPSK transmission over 40×25km few mode fiber,” in Optical Fiber Conference (OFC), San Francisco, CA, Mar. (2014), paper Th1J. 3.
    [Crossref]
  7. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
    [Crossref]
  8. H. S. Chen, H. P. A. Van den Boom, and A. M. J. Koonen, “30-Gb/s 3×3 optical mode-group-division-multiplexing system with optimized joint detection,” Phot. Technol. Lett. 23(18), 1283–1285 (2011).
    [Crossref]
  9. N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
    [Crossref] [PubMed]
  10. S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22(1), 1036–1044 (2014).
    [Crossref] [PubMed]

2014 (4)

2012 (1)

2011 (1)

H. S. Chen, H. P. A. Van den Boom, and A. M. J. Koonen, “30-Gb/s 3×3 optical mode-group-division-multiplexing system with optimized joint detection,” Phot. Technol. Lett. 23(18), 1283–1285 (2011).
[Crossref]

Bland-Hawthorn, J.

Bolle, C.

Budd, R.

L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34(5), 52–63 (2014).
[Crossref]

Burrows, E. C.

Checconi, F.

L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34(5), 52–63 (2014).
[Crossref]

Chen, H. S.

H. S. Chen, H. P. A. Van den Boom, and A. M. J. Koonen, “30-Gb/s 3×3 optical mode-group-division-multiplexing system with optimized joint detection,” Phot. Technol. Lett. 23(18), 1283–1285 (2011).
[Crossref]

Dupuis, N.

L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34(5), 52–63 (2014).
[Crossref]

Ercan, B.

Esmaeelpour, M.

Essiambre, R.-J.

Fontaine, N. K.

Fuentes, P.

L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34(5), 52–63 (2014).
[Crossref]

Gnauck, A. H.

Gross, S.

Jain, S.

Koonen, A. M. J.

H. S. Chen, H. P. A. Van den Boom, and A. M. J. Koonen, “30-Gb/s 3×3 optical mode-group-division-multiplexing system with optimized joint detection,” Phot. Technol. Lett. 23(18), 1283–1285 (2011).
[Crossref]

Lee, B. G.

L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34(5), 52–63 (2014).
[Crossref]

Leon-Saval, S. G.

Lingle, R.

Love, J. D.

Mattes, O.

L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34(5), 52–63 (2014).
[Crossref]

May-Smith, T. C.

McCurdy, A. H.

Minkenberg, C.

L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34(5), 52–63 (2014).
[Crossref]

Mumtaz, S.

Peckham, D. W.

Petrini, F.

L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34(5), 52–63 (2014).
[Crossref]

Petropoulos, P.

Rancaño, V. J. F.

Randel, S.

Richardson, D. J.

Riesen, N.

Ryf, R.

Rylyakov, A.

L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34(5), 52–63 (2014).
[Crossref]

Sahu, J. K.

Salazar-Gil, J. R.

Schares, L.

L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34(5), 52–63 (2014).
[Crossref]

Schow, C. L.

L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34(5), 52–63 (2014).
[Crossref]

Sierra, A.

Van den Boom, H. P. A.

H. S. Chen, H. P. A. Van den Boom, and A. M. J. Koonen, “30-Gb/s 3×3 optical mode-group-division-multiplexing system with optimized joint detection,” Phot. Technol. Lett. 23(18), 1283–1285 (2011).
[Crossref]

Winzer, P. J.

Withford, M. J.

IEEE Micro (1)

L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, O. Mattes, and C. Minkenberg, “A throughput-optimized optical network for data-intensive computing,” IEEE Micro 34(5), 52–63 (2014).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (3)

Phot. Technol. Lett. (1)

H. S. Chen, H. P. A. Van den Boom, and A. M. J. Koonen, “30-Gb/s 3×3 optical mode-group-division-multiplexing system with optimized joint detection,” Phot. Technol. Lett. 23(18), 1283–1285 (2011).
[Crossref]

Other (4)

S. Yan, et al., “First demonstration of all-optical programmable SDM/TDM intra data centre and WDM inter-DCN communication,” in European Conference on Optical Communications (ECOC), Cannes, France, Sept. (2014), paper PD1.2.
[Crossref]

Z. Zhu and S. Zhong, “OvS: a distributed and WDM/SDM enabled optical switching fabric for intra-datacenter networking,” in Photonics in Switching, San Diego, CA, July (2014), paper PW3B.2.

E. Ip, et al., “146λ×6×19-Gbaud wavelength- and mode-division multiplexed transmission over 10×50-km spans of few-mode fiber with a gain-equalized few-mode EDFA” in Optical Fiber Conference (OFC), Los Angeles, CA, Mar. (2013), paper PDP5A.2.

N. Cvijetic, E. Ip, N. Prasad, M.-J. Li, and T. Wang, “Experimental time and frequency domain MIMO channel matrix characterization versus distance for 6×28Gbaud QPSK transmission over 40×25km few mode fiber,” in Optical Fiber Conference (OFC), San Francisco, CA, Mar. (2014), paper Th1J. 3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) SDM intra-DCN architecture; (b) elliptical-core few-mode fiber (EC-FMF); (c) EC-FMF design; (d) Effective indices for three mode groups.
Fig. 2
Fig. 2 (a) Effective index difference between the two LP11 modes; (b) EC-FMF cross-section.
Fig. 3
Fig. 3 Experimental setup: (a) 1.3μm experiment; (b) spatial multiplexer and demultiplexer (S-MUX/S-DEMUX); (c) 1.5μm experiment; (d) 3 × 3 coupling matrix at 1.3μm; (e) 2 × 2 coupling matrix at 1.5μm.
Fig. 4
Fig. 4 Experimental results, 1.3μm: (a) real-time throughput; (b) BER vs. Rx power, 10GbE; (c) total loss (dB) under fiber bending scenarios and LP01 launch; (d) total loss (dB) under fiber bending scenarios and LP11e launch; (e) total loss (dB) under fiber bending scenarios and LP11o launch.
Fig. 5
Fig. 5 Experimental results,1.5μm: (a) Iperf screenshot of real-time throughput; (b) real-time throughput; (c) BER vs. Rx power, 10GbE; (d) BER vs. OSNR, 100Gb/s coherent QPSK.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

χ= R a R b ( R a + R b )/2

Metrics