Abstract

A microfabricated directional coupler (DC) was used for the detection of DNA conjugated with quantum dots. Output optical signals from DCs of a wide range of device lengths correspond well to theoretical and simulation results. Even 20 µm-long DC devices could detect changes in the output optical intensity by monitoring the near-field pattern using a CCD camera. The signal was enhanced 60 × using a 1500 µm-long DC device. For large cladding refractive-index changes between air and water, the normalized signal changed cyclically several times between 0 and 1. The results suggest that the DC can be the basis for miniaturized two-dimensionally integrated biochemical sensors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Distributed three-dimensional fiber Bragg grating refractometer for biochemical sensing

S. Keren and M. Horowitz
Opt. Lett. 28(21) 2037-2039 (2003)

Large one-time photo-induced tuning of directional couplers in chalcogenide-on-silicon platform

R. Califa, D. Munk, H. Genish, Yu. Kaganovskii, I. Bakish, M. Rosenbluh, and A. Zadok
Opt. Express 23(22) 28234-28243 (2015)

Polymeric dual-slab waveguide interferometer for biochemical sensing applications

Meng Wang, Sanna Uusitalo, Christina Liedert, Jussi Hiltunen, Leena Hakalahti, and Risto Myllylä
Appl. Opt. 51(12) 1886-1893 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
    [Crossref]
  2. V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-wave optical biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
    [Crossref]
  3. A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators, B. 83(1–3), 1–7 (2002).
    [Crossref]
  4. B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson, and D. J. Schiffrin, “Integrated-optical directional coupler biosensor,” Opt. Lett. 21(8), 618–620 (1996).
    [Crossref] [PubMed]
  5. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators, B. 61(1–3), 100–127 (1999).
    [Crossref]
  6. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
    [Crossref]
  7. K. E. Zinoviev, A. B. González-Guerrero, C. Dominguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
    [Crossref]
  8. D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
    [Crossref] [PubMed]
  9. V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg grating sensors based on sub-micrometer optical rib waveguide in SOI,” IEEE Sens. J. 8(9), 1603–1611 (2008).
    [Crossref]
  10. C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
    [Crossref]
  11. V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Ammonia optical sensing by micro-ring resonators,” Sensors (Basel Switzerland) 7(11), 2741–2749 (2007).
    [Crossref]
  12. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  13. V. M. N. Passaro, F. Dell’olio, C. Ciminelli, and M. N. Armenise, “Efficient chemical sensing by coupled slot SOI waveguides,” Sensors (Basel) 9(2), 1012–1032 (2009).
    [Crossref] [PubMed]
  14. C. E. Sims and N. L. Allbritton, “Analysis of single mammalian cells on-chip,” Lab Chip 7(4), 423–440 (2007).
    [Crossref] [PubMed]
  15. F. Sassa, J. Fukuda, and H. Suzuki, “Microprocessing of liquid plugs for bio/chemical analyses,” Anal. Chem. 80(16), 6206–6213 (2008).
    [Crossref] [PubMed]
  16. F. Sassa, H. Laghzali, J. Fukuda, and H. Suzuki, “Coulometric detection of components in liquid plugs by microfabricated flow channel and electrode structures,” Anal. Chem. 82(20), 8725–8732 (2010).
    [Crossref] [PubMed]
  17. N. C. Tansil and Z. Gao, “Nanoparticles in bio-molecular detection,” Nano Today 1(1), 28–37 (2006).
    [Crossref]

2012 (2)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

F. Sassa, H. Laghzali, J. Fukuda, and H. Suzuki, “Coulometric detection of components in liquid plugs by microfabricated flow channel and electrode structures,” Anal. Chem. 82(20), 8725–8732 (2010).
[Crossref] [PubMed]

2009 (1)

V. M. N. Passaro, F. Dell’olio, C. Ciminelli, and M. N. Armenise, “Efficient chemical sensing by coupled slot SOI waveguides,” Sensors (Basel) 9(2), 1012–1032 (2009).
[Crossref] [PubMed]

2008 (2)

F. Sassa, J. Fukuda, and H. Suzuki, “Microprocessing of liquid plugs for bio/chemical analyses,” Anal. Chem. 80(16), 6206–6213 (2008).
[Crossref] [PubMed]

V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg grating sensors based on sub-micrometer optical rib waveguide in SOI,” IEEE Sens. J. 8(9), 1603–1611 (2008).
[Crossref]

2007 (3)

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-wave optical biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[Crossref]

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Ammonia optical sensing by micro-ring resonators,” Sensors (Basel Switzerland) 7(11), 2741–2749 (2007).
[Crossref]

C. E. Sims and N. L. Allbritton, “Analysis of single mammalian cells on-chip,” Lab Chip 7(4), 423–440 (2007).
[Crossref] [PubMed]

2006 (2)

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

N. C. Tansil and Z. Gao, “Nanoparticles in bio-molecular detection,” Nano Today 1(1), 28–37 (2006).
[Crossref]

2004 (1)

2003 (1)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

2002 (1)

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators, B. 83(1–3), 1–7 (2002).
[Crossref]

1999 (1)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators, B. 61(1–3), 100–127 (1999).
[Crossref]

1996 (1)

Abad, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Allbritton, N. L.

C. E. Sims and N. L. Allbritton, “Analysis of single mammalian cells on-chip,” Lab Chip 7(4), 423–440 (2007).
[Crossref] [PubMed]

Almeida, V. R.

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Armenise, M. N.

V. M. N. Passaro, F. Dell’olio, C. Ciminelli, and M. N. Armenise, “Efficient chemical sensing by coupled slot SOI waveguides,” Sensors (Basel) 9(2), 1012–1032 (2009).
[Crossref] [PubMed]

Barrios, C. A.

Calle, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Casamassima, B.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-wave optical biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[Crossref]

Chao, C.-Y.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

Ciminelli, C.

V. M. N. Passaro, F. Dell’olio, C. Ciminelli, and M. N. Armenise, “Efficient chemical sensing by coupled slot SOI waveguides,” Sensors (Basel) 9(2), 1012–1032 (2009).
[Crossref] [PubMed]

D’Amico, G.

V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg grating sensors based on sub-micrometer optical rib waveguide in SOI,” IEEE Sens. J. 8(9), 1603–1611 (2008).
[Crossref]

Dante, S.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

De Leonardis, F.

V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg grating sensors based on sub-micrometer optical rib waveguide in SOI,” IEEE Sens. J. 8(9), 1603–1611 (2008).
[Crossref]

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Ammonia optical sensing by micro-ring resonators,” Sensors (Basel Switzerland) 7(11), 2741–2749 (2007).
[Crossref]

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-wave optical biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[Crossref]

Dell’olio, F.

V. M. N. Passaro, F. Dell’olio, C. Ciminelli, and M. N. Armenise, “Efficient chemical sensing by coupled slot SOI waveguides,” Sensors (Basel) 9(2), 1012–1032 (2009).
[Crossref] [PubMed]

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Ammonia optical sensing by micro-ring resonators,” Sensors (Basel Switzerland) 7(11), 2741–2749 (2007).
[Crossref]

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-wave optical biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[Crossref]

Dominguez, C.

Domínguez, C.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Domynguez, C.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Duval, D.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Fernández, L. J.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Fukuda, J.

F. Sassa, H. Laghzali, J. Fukuda, and H. Suzuki, “Coulometric detection of components in liquid plugs by microfabricated flow channel and electrode structures,” Anal. Chem. 82(20), 8725–8732 (2010).
[Crossref] [PubMed]

F. Sassa, J. Fukuda, and H. Suzuki, “Microprocessing of liquid plugs for bio/chemical analyses,” Anal. Chem. 80(16), 6206–6213 (2008).
[Crossref] [PubMed]

Fung, W.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

Gao, Z.

N. C. Tansil and Z. Gao, “Nanoparticles in bio-molecular detection,” Nano Today 1(1), 28–37 (2006).
[Crossref]

González-Guerrero, A. B.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

K. E. Zinoviev, A. B. González-Guerrero, C. Dominguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
[Crossref]

Greve, J.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators, B. 83(1–3), 1–7 (2002).
[Crossref]

Guo, L. J.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

Harris, R. D.

Heideman, R. G.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators, B. 61(1–3), 100–127 (1999).
[Crossref]

Kanger, J. S.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators, B. 83(1–3), 1–7 (2002).
[Crossref]

Laghzali, H.

F. Sassa, H. Laghzali, J. Fukuda, and H. Suzuki, “Coulometric detection of components in liquid plugs by microfabricated flow channel and electrode structures,” Anal. Chem. 82(20), 8725–8732 (2010).
[Crossref] [PubMed]

Lambeck, P. V.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators, B. 83(1–3), 1–7 (2002).
[Crossref]

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators, B. 61(1–3), 100–127 (1999).
[Crossref]

Lechuga, L. M.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

K. E. Zinoviev, A. B. González-Guerrero, C. Dominguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
[Crossref]

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Lipson, M.

Llobera, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Loiacono, R.

V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg grating sensors based on sub-micrometer optical rib waveguide in SOI,” IEEE Sens. J. 8(9), 1603–1611 (2008).
[Crossref]

Luff, B. J.

Monge, R.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Montoya, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Osmond, J.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Passaro, V. M. N.

V. M. N. Passaro, F. Dell’olio, C. Ciminelli, and M. N. Armenise, “Efficient chemical sensing by coupled slot SOI waveguides,” Sensors (Basel) 9(2), 1012–1032 (2009).
[Crossref] [PubMed]

V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg grating sensors based on sub-micrometer optical rib waveguide in SOI,” IEEE Sens. J. 8(9), 1603–1611 (2008).
[Crossref]

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Ammonia optical sensing by micro-ring resonators,” Sensors (Basel Switzerland) 7(11), 2741–2749 (2007).
[Crossref]

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-wave optical biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[Crossref]

Prieto, F.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Sassa, F.

F. Sassa, H. Laghzali, J. Fukuda, and H. Suzuki, “Coulometric detection of components in liquid plugs by microfabricated flow channel and electrode structures,” Anal. Chem. 82(20), 8725–8732 (2010).
[Crossref] [PubMed]

F. Sassa, J. Fukuda, and H. Suzuki, “Microprocessing of liquid plugs for bio/chemical analyses,” Anal. Chem. 80(16), 6206–6213 (2008).
[Crossref] [PubMed]

Schiffrin, D. J.

Sepúlveda, B.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Sims, C. E.

C. E. Sims and N. L. Allbritton, “Analysis of single mammalian cells on-chip,” Lab Chip 7(4), 423–440 (2007).
[Crossref] [PubMed]

Suzuki, H.

F. Sassa, H. Laghzali, J. Fukuda, and H. Suzuki, “Coulometric detection of components in liquid plugs by microfabricated flow channel and electrode structures,” Anal. Chem. 82(20), 8725–8732 (2010).
[Crossref] [PubMed]

F. Sassa, J. Fukuda, and H. Suzuki, “Microprocessing of liquid plugs for bio/chemical analyses,” Anal. Chem. 80(16), 6206–6213 (2008).
[Crossref] [PubMed]

Tansil, N. C.

N. C. Tansil and Z. Gao, “Nanoparticles in bio-molecular detection,” Nano Today 1(1), 28–37 (2006).
[Crossref]

Wijn, R.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators, B. 83(1–3), 1–7 (2002).
[Crossref]

Wilkinson, J. S.

Wilson, R.

Xu, Q.

Ymeti, A.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators, B. 83(1–3), 1–7 (2002).
[Crossref]

Zinoviev, K. E.

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

K. E. Zinoviev, A. B. González-Guerrero, C. Dominguez, and L. M. Lechuga, “Integrated bimodal waveguide interferometric biosensor for label-free analysis,” J. Lightwave Technol. 29(13), 1926–1930 (2011).
[Crossref]

Anal. Chem. (2)

F. Sassa, J. Fukuda, and H. Suzuki, “Microprocessing of liquid plugs for bio/chemical analyses,” Anal. Chem. 80(16), 6206–6213 (2008).
[Crossref] [PubMed]

F. Sassa, H. Laghzali, J. Fukuda, and H. Suzuki, “Coulometric detection of components in liquid plugs by microfabricated flow channel and electrode structures,” Anal. Chem. 82(20), 8725–8732 (2010).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[Crossref]

IEEE Sens. J. (1)

V. M. N. Passaro, R. Loiacono, G. D’Amico, and F. De Leonardis, “Design of Bragg grating sensors based on sub-micrometer optical rib waveguide in SOI,” IEEE Sens. J. 8(9), 1603–1611 (2008).
[Crossref]

J. Lightwave Technol. (1)

Lab Chip (2)

C. E. Sims and N. L. Allbritton, “Analysis of single mammalian cells on-chip,” Lab Chip 7(4), 423–440 (2007).
[Crossref] [PubMed]

D. Duval, A. B. González-Guerrero, S. Dante, J. Osmond, R. Monge, L. J. Fernández, K. E. Zinoviev, C. Domínguez, and L. M. Lechuga, “Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers,” Lab Chip 12(11), 1987–1994 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Nano Today (1)

N. C. Tansil and Z. Gao, “Nanoparticles in bio-molecular detection,” Nano Today 1(1), 28–37 (2006).
[Crossref]

Nanotechnology (1)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domynguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Opt. Lett. (2)

Sens. Actuators, B. (2)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators, B. 61(1–3), 100–127 (1999).
[Crossref]

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators, B. 83(1–3), 1–7 (2002).
[Crossref]

Sensors (Basel Switzerland) (2)

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-wave optical biosensors,” Sensors (Basel Switzerland) 7(4), 508–536 (2007).
[Crossref]

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Ammonia optical sensing by micro-ring resonators,” Sensors (Basel Switzerland) 7(11), 2741–2749 (2007).
[Crossref]

Sensors (Basel) (1)

V. M. N. Passaro, F. Dell’olio, C. Ciminelli, and M. N. Armenise, “Efficient chemical sensing by coupled slot SOI waveguides,” Sensors (Basel) 9(2), 1012–1032 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic image of the DC waveguide biosensor; (b) and (c) Cross section and top view of the device, respectively.
Fig. 2
Fig. 2 SEM images of the DC waveguide. (a) Cross section; (b) Top view.
Fig. 3
Fig. 3 (a) Schematic images of measurement instruments; (b) Near-field image of the output signals s1 and s2.
Fig. 4
Fig. 4 Schematic images of a droplet on the device. (a) Top view; (b) Cross section.
Fig. 5
Fig. 5 (a) Simulation results of I1 and I2 versus position x along the DC waveguide; (b) Schematic cross section used for the calculation of I2 with nclad; (c) Calculated I2; (d) Changes in I2 at x = 80 µm with respect to Δ nclad; (e) Normalized sensitivity Δ I2 / Δ nclad as a function of x.
Fig. 6
Fig. 6 Changes in I2 when water and ethanol droplets were placed on the 140 µm-long DC and dried alternately.
Fig. 7
Fig. 7 Dependence of I2 on DC length in (a) Air; (b) Water droplet; and (c) Ethanol droplet. The curves were drawn by least square fitting assuming sinusoidal curves based on Eq. (2).
Fig. 8
Fig. 8 Scheme of DC surface modification for QD-DNA complex detection. (a) Unmodified DC surface; (b) DC surface modified with complementary single-stranded DNA probes; (c) DC surface following hybridization with QD-DNA complex.
Fig. 9
Fig. 9 Detection of target DNA with the DC sensor in NaCl aqueous solution. (a) Schematic image of the DC surface modified with single-stranded DNA probes; (b) DC surface modified with hybridized target DNA; (c) Change in I2 when the DC length was changed; (d), (e) and (f) Enlarged parts of (c) ranging from 0 to 250 µm, from 500 to 700 µm, and from 1400 to 1600 µm, respectively, extracted from Fig. 9(c).
Fig. 10
Fig. 10 Schematic pictures showing (a) Time-dependent coverage of NaCl droplet for measuring time-dependent I2 ; and (b) Principle of the signal processing in the I2 vs time.
Fig. 11
Fig. 11 (a), (b), and (c): Schematic pictures showing (a) time-dependence of Δnclad; (b) Time-dependence of s2; and (c) Integration of s2; (d), (e) and (f): Corresponding experimental results showing (d) Frame captures from a real-time movie of I1 and I2 visualized as near-field-patterns; (e) Measured time-dependent I2; and (f) Integrated I2. The DC surface coverage is gradually changed from air to buffer solution in about 12 sec and the 7.5-cycle signal change is detected from the movie.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I i = s i s 1 + s 2 , (i=1,2).
P(x) si n 2 πx 2 L c ,

Metrics