Abstract

We report on the investigation of terahertz-to-infrared (THz-to-IR) thermal emission that relies on the excitation of surface plasmons in metal films deposited on a substrate with randomly ordered nanoscale pore arrays. The THz-to-IR radiation was observed both in the direction of laser beam propagation and the reverse direction. The intensity ratio between backward and forward radiation is exponentially dependent on the nominal thickness of the porous metal films. The findings are discussed in view of the proposed generation mechanism based on propagating surface plasmon polaritons on both air/metal and metal/substrate interfaces.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bi-directional terahertz-to-infrared emission from metal-coated nanostructures upon femtosecond laser irradiation

Liangliang Zhang, Tong Wu, Ji Zhao, Cunlin Zhang, and X.-C. Zhang
Opt. Express 23(19) 25202-25208 (2015)

Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces

Gregor H. Welsh and Klaas Wynne
Opt. Express 17(4) 2470-2480 (2009)

Surface plasmon-coupled emission on plasmonic Bragg gratings

Mana Toma, Koji Toma, Pavel Adam, Jiří Homola, Wolfgang Knoll, and Jakub Dostálek
Opt. Express 20(13) 14042-14053 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Sakai, Terahertz Optoelectronics, (Springer, 2005).
  2. D. K. Polyushkin, I. Marton, P. Racz, P. Dombi, E. Hendry, and W. L. Barnes, “Mechanisms of THz generation from silver nanoparticle and nanohole arrays illuminated by 100fs pulses of infrared light,” Phys. Rev. B 89(12), 125426 (2014).
    [Crossref]
  3. G. Ramakrishnan and P. C. M. Planken, “Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films,” Opt. Lett. 36(13), 2572–2574 (2011).
    [Crossref] [PubMed]
  4. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, 1988).
  5. G. Ramakrishnan, N. Kumar, P. C. M. Planken, D. Tanaka, and K. Kajikawa, “Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer,” Opt. Express 20(4), 4067–4073 (2012).
    [Crossref] [PubMed]
  6. M. Kuttge, F. J. García de Abajo, and A. Polman, “How grooves reflect and confine surfaceplasmon polaritons,” Opt. Express 17(12), 10385–10392 (2009).
    [Crossref] [PubMed]
  7. G. H. Welsh and K. Wynne, “Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces,” Opt. Express 17(4), 2470–2480 (2009).
    [Crossref] [PubMed]
  8. G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
    [Crossref] [PubMed]
  9. F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hubner, M. Zeisberger, W. Paa, H. Stafast, and H. G. Meyer, “Bi-directional terahertz emission from gold coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102(3), 551–554 (2011).
    [Crossref]
  10. A. Schmidt, F. Garwe, U. Hubner, T. May, W. Paa, M. Zeisberger, G. Zieger, and H. Stafast, “Experimental characterization of bi-directional terahertz emission from Au-coated nanogratings,” Appl. Phys. B 109(4), 631–642 (2012).
    [Crossref]
  11. L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
    [Crossref] [PubMed]
  12. D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
    [Crossref] [PubMed]
  13. J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light form metals,” Appl. Phys. B 106(2), 349–355 (2012).
    [Crossref]
  14. L. Zhang, K. Mu, J. Zhao, T. Wu, H. Wang, C. Zhang, and X.-C. Zhang, “Intense thermal terahertz-to-infrared emission from random metallic nanostructures under femtosecond laser irradiation,” Opt. Express 23(11), 14211–14218 (2015).
    [Crossref] [PubMed]
  15. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  16. A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
    [Crossref]
  17. A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14(26), 13113–13119 (2006).
    [Crossref] [PubMed]
  18. A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
    [Crossref]
  19. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
    [Crossref] [PubMed]
  20. I. R. Hooper and J. R. Sambles, “Coupling surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
    [Crossref]
  21. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [Crossref]

2015 (1)

2014 (2)

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

D. K. Polyushkin, I. Marton, P. Racz, P. Dombi, E. Hendry, and W. L. Barnes, “Mechanisms of THz generation from silver nanoparticle and nanohole arrays illuminated by 100fs pulses of infrared light,” Phys. Rev. B 89(12), 125426 (2014).
[Crossref]

2012 (3)

A. Schmidt, F. Garwe, U. Hubner, T. May, W. Paa, M. Zeisberger, G. Zieger, and H. Stafast, “Experimental characterization of bi-directional terahertz emission from Au-coated nanogratings,” Appl. Phys. B 109(4), 631–642 (2012).
[Crossref]

G. Ramakrishnan, N. Kumar, P. C. M. Planken, D. Tanaka, and K. Kajikawa, “Surface plasmon-enhanced terahertz emission from a hemicyanine self-assembled monolayer,” Opt. Express 20(4), 4067–4073 (2012).
[Crossref] [PubMed]

J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light form metals,” Appl. Phys. B 106(2), 349–355 (2012).
[Crossref]

2011 (3)

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hubner, M. Zeisberger, W. Paa, H. Stafast, and H. G. Meyer, “Bi-directional terahertz emission from gold coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102(3), 551–554 (2011).
[Crossref]

G. Ramakrishnan and P. C. M. Planken, “Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films,” Opt. Lett. 36(13), 2572–2574 (2011).
[Crossref] [PubMed]

2009 (3)

2007 (1)

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

2006 (2)

A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14(26), 13113–13119 (2006).
[Crossref] [PubMed]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

2005 (1)

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

2004 (1)

I. R. Hooper and J. R. Sambles, “Coupling surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[Crossref]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Barnes, W. L.

D. K. Polyushkin, I. Marton, P. Racz, P. Dombi, E. Hendry, and W. L. Barnes, “Mechanisms of THz generation from silver nanoparticle and nanohole arrays illuminated by 100fs pulses of infrared light,” Phys. Rev. B 89(12), 125426 (2014).
[Crossref]

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Chatzakis, I.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Dai, J.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Dombi, P.

D. K. Polyushkin, I. Marton, P. Racz, P. Dombi, E. Hendry, and W. L. Barnes, “Mechanisms of THz generation from silver nanoparticle and nanohole arrays illuminated by 100fs pulses of infrared light,” Phys. Rev. B 89(12), 125426 (2014).
[Crossref]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

García de Abajo, F. J.

Garwe, F.

A. Schmidt, F. Garwe, U. Hubner, T. May, W. Paa, M. Zeisberger, G. Zieger, and H. Stafast, “Experimental characterization of bi-directional terahertz emission from Au-coated nanogratings,” Appl. Phys. B 109(4), 631–642 (2012).
[Crossref]

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hubner, M. Zeisberger, W. Paa, H. Stafast, and H. G. Meyer, “Bi-directional terahertz emission from gold coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102(3), 551–554 (2011).
[Crossref]

Guo, C.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14(26), 13113–13119 (2006).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

Hendry, E.

D. K. Polyushkin, I. Marton, P. Racz, P. Dombi, E. Hendry, and W. L. Barnes, “Mechanisms of THz generation from silver nanoparticle and nanohole arrays illuminated by 100fs pulses of infrared light,” Phys. Rev. B 89(12), 125426 (2014).
[Crossref]

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Hooper, I. R.

I. R. Hooper and J. R. Sambles, “Coupling surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[Crossref]

Hubner, U.

A. Schmidt, F. Garwe, U. Hubner, T. May, W. Paa, M. Zeisberger, G. Zieger, and H. Stafast, “Experimental characterization of bi-directional terahertz emission from Au-coated nanogratings,” Appl. Phys. B 109(4), 631–642 (2012).
[Crossref]

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hubner, M. Zeisberger, W. Paa, H. Stafast, and H. G. Meyer, “Bi-directional terahertz emission from gold coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102(3), 551–554 (2011).
[Crossref]

Hunt, N. T.

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

Kajikawa, K.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kohns, P.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Kokody, N. G.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Koschny, T.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Kumar, N.

Kuttge, M.

Kuzmichev, V. M.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

Luo, L.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

Marton, I.

D. K. Polyushkin, I. Marton, P. Racz, P. Dombi, E. Hendry, and W. L. Barnes, “Mechanisms of THz generation from silver nanoparticle and nanohole arrays illuminated by 100fs pulses of infrared light,” Phys. Rev. B 89(12), 125426 (2014).
[Crossref]

May, T.

A. Schmidt, F. Garwe, U. Hubner, T. May, W. Paa, M. Zeisberger, G. Zieger, and H. Stafast, “Experimental characterization of bi-directional terahertz emission from Au-coated nanogratings,” Appl. Phys. B 109(4), 631–642 (2012).
[Crossref]

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hubner, M. Zeisberger, W. Paa, H. Stafast, and H. G. Meyer, “Bi-directional terahertz emission from gold coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102(3), 551–554 (2011).
[Crossref]

Meyer, H. G.

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hubner, M. Zeisberger, W. Paa, H. Stafast, and H. G. Meyer, “Bi-directional terahertz emission from gold coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102(3), 551–554 (2011).
[Crossref]

Mu, K.

Niesler, F. B. P.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Paa, W.

A. Schmidt, F. Garwe, U. Hubner, T. May, W. Paa, M. Zeisberger, G. Zieger, and H. Stafast, “Experimental characterization of bi-directional terahertz emission from Au-coated nanogratings,” Appl. Phys. B 109(4), 631–642 (2012).
[Crossref]

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hubner, M. Zeisberger, W. Paa, H. Stafast, and H. G. Meyer, “Bi-directional terahertz emission from gold coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102(3), 551–554 (2011).
[Crossref]

Planken, P. C. M.

Polman, A.

Polyushkin, D. K.

D. K. Polyushkin, I. Marton, P. Racz, P. Dombi, E. Hendry, and W. L. Barnes, “Mechanisms of THz generation from silver nanoparticle and nanohole arrays illuminated by 100fs pulses of infrared light,” Phys. Rev. B 89(12), 125426 (2014).
[Crossref]

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Racz, P.

D. K. Polyushkin, I. Marton, P. Racz, P. Dombi, E. Hendry, and W. L. Barnes, “Mechanisms of THz generation from silver nanoparticle and nanohole arrays illuminated by 100fs pulses of infrared light,” Phys. Rev. B 89(12), 125426 (2014).
[Crossref]

Ramakrishnan, G.

Sambles, J. R.

I. R. Hooper and J. R. Sambles, “Coupling surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Schmidt, A.

A. Schmidt, F. Garwe, U. Hubner, T. May, W. Paa, M. Zeisberger, G. Zieger, and H. Stafast, “Experimental characterization of bi-directional terahertz emission from Au-coated nanogratings,” Appl. Phys. B 109(4), 631–642 (2012).
[Crossref]

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hubner, M. Zeisberger, W. Paa, H. Stafast, and H. G. Meyer, “Bi-directional terahertz emission from gold coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102(3), 551–554 (2011).
[Crossref]

Soukoulis, C. M.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Stafast, H.

A. Schmidt, F. Garwe, U. Hubner, T. May, W. Paa, M. Zeisberger, G. Zieger, and H. Stafast, “Experimental characterization of bi-directional terahertz emission from Au-coated nanogratings,” Appl. Phys. B 109(4), 631–642 (2012).
[Crossref]

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hubner, M. Zeisberger, W. Paa, H. Stafast, and H. G. Meyer, “Bi-directional terahertz emission from gold coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102(3), 551–554 (2011).
[Crossref]

Stone, E. K.

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Tanaka, D.

Vorobyev, A. Y.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14(26), 13113–13119 (2006).
[Crossref] [PubMed]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

Wang, H.

Wang, J.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Wang, Y.

J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light form metals,” Appl. Phys. B 106(2), 349–355 (2012).
[Crossref]

Wegener, M.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Welsh, G. H.

G. H. Welsh and K. Wynne, “Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces,” Opt. Express 17(4), 2470–2480 (2009).
[Crossref] [PubMed]

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

Wu, T.

Wynne, K.

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hubner, M. Zeisberger, W. Paa, H. Stafast, and H. G. Meyer, “Bi-directional terahertz emission from gold coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102(3), 551–554 (2011).
[Crossref]

G. H. Welsh and K. Wynne, “Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces,” Opt. Express 17(4), 2470–2480 (2009).
[Crossref] [PubMed]

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

Yang, J.

J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light form metals,” Appl. Phys. B 106(2), 349–355 (2012).
[Crossref]

Yang, Y.

J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light form metals,” Appl. Phys. B 106(2), 349–355 (2012).
[Crossref]

Zeisberger, M.

A. Schmidt, F. Garwe, U. Hubner, T. May, W. Paa, M. Zeisberger, G. Zieger, and H. Stafast, “Experimental characterization of bi-directional terahertz emission from Au-coated nanogratings,” Appl. Phys. B 109(4), 631–642 (2012).
[Crossref]

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hubner, M. Zeisberger, W. Paa, H. Stafast, and H. G. Meyer, “Bi-directional terahertz emission from gold coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102(3), 551–554 (2011).
[Crossref]

Zhang, C.

Zhang, L.

Zhang, X.-C.

Zhao, B.

J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light form metals,” Appl. Phys. B 106(2), 349–355 (2012).
[Crossref]

Zhao, J.

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhu, X.

J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light form metals,” Appl. Phys. B 106(2), 349–355 (2012).
[Crossref]

Zieger, G.

A. Schmidt, F. Garwe, U. Hubner, T. May, W. Paa, M. Zeisberger, G. Zieger, and H. Stafast, “Experimental characterization of bi-directional terahertz emission from Au-coated nanogratings,” Appl. Phys. B 109(4), 631–642 (2012).
[Crossref]

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hubner, M. Zeisberger, W. Paa, H. Stafast, and H. G. Meyer, “Bi-directional terahertz emission from gold coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102(3), 551–554 (2011).
[Crossref]

Appl. Phys. B (3)

F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hubner, M. Zeisberger, W. Paa, H. Stafast, and H. G. Meyer, “Bi-directional terahertz emission from gold coated nanogratings by excitation via femtosecond laser pulses,” Appl. Phys. B 102(3), 551–554 (2011).
[Crossref]

A. Schmidt, F. Garwe, U. Hubner, T. May, W. Paa, M. Zeisberger, G. Zieger, and H. Stafast, “Experimental characterization of bi-directional terahertz emission from Au-coated nanogratings,” Appl. Phys. B 109(4), 631–642 (2012).
[Crossref]

J. Yang, Y. Yang, B. Zhao, Y. Wang, and X. Zhu, “Femtosecond laser-induced surface structures to significantly improve the thermal emission of light form metals,” Appl. Phys. B 106(2), 349–355 (2012).
[Crossref]

Appl. Phys. Lett. (1)

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[Crossref]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Nano Lett. (1)

D. K. Polyushkin, E. Hendry, E. K. Stone, and W. L. Barnes, “THz generation from plasmonic nanoparticle arrays,” Nano Lett. 11(11), 4718–4724 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Phys. Rev. B (2)

I. R. Hooper and J. R. Sambles, “Coupling surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[Crossref]

D. K. Polyushkin, I. Marton, P. Racz, P. Dombi, E. Hendry, and W. L. Barnes, “Mechanisms of THz generation from silver nanoparticle and nanohole arrays illuminated by 100fs pulses of infrared light,” Phys. Rev. B 89(12), 125426 (2014).
[Crossref]

Phys. Rev. Lett. (2)

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98(2), 026803 (2007).
[Crossref] [PubMed]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

Other (2)

K. Sakai, Terahertz Optoelectronics, (Springer, 2005).

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Scanning electron microscope (SEM) images of porous metal films with thicknesses of 30 nm, 100 nm, and 200 nm. The darkest regions indicate the absence of metal. The scale bar is 500 nm. (b) Optical absorptivity as a function of the thickness of the porous metal films.
Fig. 2
Fig. 2 (a) Experimental setup for measuring the incidence angle dependence of terahertz-to-infrared (THz-to-IR) radiation. (b) Modified setup for measuring the angular distribution of THz-to-IR radiation.
Fig. 3
Fig. 3 (a) Measured terahertz-to-infrared (THz-to-IR) thermal radiation intensity as a function of the incidence angle emitted from nanostructured metal films with different thicknesses under p-polarized femtosecond laser irradiation. (b) THz-to-IR emission intensity at a normal incidence angle (red data points) and resonant angles (blue data points) as a function of metal film thickness. The lines are merely guides to the eye.
Fig. 4
Fig. 4 (a) Representative angular distribution of the terahertz-to-infrared (THz-to-IR) emission from the nanostructured metal films with thicknesses of 30 nm (magenta), 100 nm (blue), and 200 nm (green). The red arrow indicates the propagation direction of the optical laser. The solid lines are experimental data. The dashed lines are guides to the eye. (b) Top: the intensity of the forward (red data points) and backward (blue data points) emission as a function of the metal film thickness. Bottom: the intensity ratio between backward and forward radiation as a function of the thickness. The blue dots are experimental data. The red curve represents an exponential fit.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A= A INTR + A SR ,
sin θ SP +Nλ/ Λ ¯ = n SP ,
n SP = ε d ε m /( ε d + ε m ) ,
P Backward P Forward e αd ,

Metrics