Abstract

Compact and fully collinear light source for multiplex coherent anti-Stokes Raman scattering (CARS) microscopy was proposed and demonstrated. It consists of only a microchip laser, a short photonic crystal fiber, and a longpass filter. It offers performance of sensitivity, bandwidth, and spectral resolution suitable for biomedical applications, especially covering the entire fingerprint region (500-1800 cm−1). It can be readily implemented by a commercially available microchip laser and a photonic crystal fiber. It has great potential to expand the utility of CARS microscopy to a wide variety of fields such as endoscopy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing

Thomas Gottschall, Martin Baumgartl, Aude Sagnier, Jan Rothhardt, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann
Opt. Express 20(11) 12004-12013 (2012)

Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared

Masanari Okuno, Hideaki Kano, Philippe Leproux, Vincent Couderc, and Hiro-o Hamaguchi
Opt. Lett. 33(9) 923-925 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Cheng and X. S. Xie, eds., Coherent Raman Scattering Microscopy (CRC, 2012).
  2. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982).
    [Crossref] [PubMed]
  3. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  4. M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. O. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. Engl. 49(38), 6773–6777 (2010).
    [Crossref] [PubMed]
  5. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
    [Crossref] [PubMed]
  6. M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express 20(24), 26583–26595 (2012).
    [Crossref] [PubMed]
  7. M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20(19), 21010–21018 (2012).
    [Crossref] [PubMed]
  8. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20(4), 4484–4493 (2012).
    [Crossref] [PubMed]
  9. C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
    [Crossref] [PubMed]
  10. A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett. 35(2), 226–228 (2010).
    [Crossref] [PubMed]
  11. K. Tada and N. Karasawa, “Single-beam coherent anti-Stokes Raman scattering spectroscopy using both pump and soliton Stokes pulses from a photonic crystal fiber,” Appl. Phys. Express 4(9), 092701 (2011).
    [Crossref]
  12. B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31(16), 2495–2497 (2006).
    [Crossref] [PubMed]
  13. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [Crossref] [PubMed]
  14. Y. Liu, M. D. King, H. Tu, Y. Zhao, and S. A. Boppart, “Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum,” Opt. Express 21(7), 8269–8275 (2013).
    [Crossref] [PubMed]
  15. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [Crossref] [PubMed]
  16. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. Sunney Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37(10), 1652–1654 (2012).
    [Crossref] [PubMed]
  17. R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35(19), 3282–3284 (2010).
    [Crossref] [PubMed]
  18. S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Biomed. Opt. Express 2(5), 1296–1306 (2011).
    [Crossref] [PubMed]
  19. H. Mikami, M. Shiozawa, M. Shirai, and K. Watanabe, “Compact light source for ultrabroadband coherent anti-Stoke Raman scattering (CARS) microscopy,” Opt. Express 23(3), 2872–2878 (2015).
    [Crossref] [PubMed]
  20. M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010).
    [Crossref] [PubMed]
  21. F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS Endoscopy,” Opt. Express 14(10), 4427–4432 (2006).
    [Crossref] [PubMed]
  22. A. De Angelis, A. Labruyère, V. Couderc, P. Leproux, A. Tonello, H. Segawa, M. Okuno, H. Kano, D. Arnaud-Cormos, P. Lévèque, and H. O. Hamaguchi, “Time-frequency resolved analysis of a nanosecond supercontinuum source dedicated to multiplex CARS application,” Opt. Express 20(28), 29705–29716 (2012).
    [Crossref] [PubMed]
  23. J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
    [Crossref]
  24. G. Agrawal, Nonlinear Fiber Optics, Fifth Edition (Academic, 2012).
  25. NKT Photonics Application note, http://www.nktphotonics.com/files/files/Application_Note_-_Damage_threshold_of_fiber_facets.pdf
  26. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
    [Crossref] [PubMed]
  27. W. M. Sears, J. L. Hunt, and J. R. Stevens, “Raman scattering from polymerizing styrene. I. Vibrational mode analysis,” J. Chem. Phys. 75(4), 1589–1598 (1981).
    [Crossref]
  28. R. L. McCreery, http://www.chem.ualberta.ca/~mccreery/ramanmaterials.html
  29. S. Murugkar, B. Smith, P. Srivastava, A. Moica, M. Naji, C. Brideau, P. K. Stys, and H. Anis, “Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source,” Opt. Express 18(23), 23796–23804 (2010).
    [Crossref] [PubMed]
  30. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
    [Crossref] [PubMed]
  31. H. Mikami, M. Shiozawa, M. Shirai, and K. Watanabe, “Quantitative index of arbitrary molar concentration for coherent anti-Stoke Raman scattering (CARS) spectroscopy and microscopy,” Opt. Express 23(4), 5300–5311 (2015).
    [PubMed]

2015 (2)

2014 (2)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

2013 (2)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Y. Liu, M. D. King, H. Tu, Y. Zhao, and S. A. Boppart, “Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum,” Opt. Express 21(7), 8269–8275 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (2)

S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Biomed. Opt. Express 2(5), 1296–1306 (2011).
[Crossref] [PubMed]

K. Tada and N. Karasawa, “Single-beam coherent anti-Stokes Raman scattering spectroscopy using both pump and soliton Stokes pulses from a photonic crystal fiber,” Appl. Phys. Express 4(9), 092701 (2011).
[Crossref]

2010 (5)

2009 (1)

2006 (3)

2002 (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1982 (1)

1981 (1)

W. M. Sears, J. L. Hunt, and J. R. Stevens, “Raman scattering from polymerizing styrene. I. Vibrational mode analysis,” J. Chem. Phys. 75(4), 1589–1598 (1981).
[Crossref]

1980 (1)

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
[Crossref]

Abreu-Afonso, J.

Anis, H.

Arnaud-Cormos, D.

Balu, M.

Baumgartl, M.

Bégin, S.

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Bonn, M.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. O. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. Engl. 49(38), 6773–6777 (2010).
[Crossref] [PubMed]

E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
[Crossref] [PubMed]

Boppart, S. A.

Brideau, C.

Buckup, T.

Burgoyne, B.

Camp, C. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Cerullo, G.

Chemnitz, M.

Chen, Z.

Cicerone, M. T.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
[Crossref] [PubMed]

Côté, D.

Couderc, V.

A. De Angelis, A. Labruyère, V. Couderc, P. Leproux, A. Tonello, H. Segawa, M. Okuno, H. Kano, D. Arnaud-Cormos, P. Lévèque, and H. O. Hamaguchi, “Time-frequency resolved analysis of a nanosecond supercontinuum source dedicated to multiplex CARS application,” Opt. Express 20(28), 29705–29716 (2012).
[Crossref] [PubMed]

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. O. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. Engl. 49(38), 6773–6777 (2010).
[Crossref] [PubMed]

Day, J. P. R.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. O. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. Engl. 49(38), 6773–6777 (2010).
[Crossref] [PubMed]

De Angelis, A.

Dietzek, B.

Díez, A.

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Duncan, M. D.

Evans, C. L.

Freudiger, C. W.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Fu, D.

Gambetta, A.

Ganikhanov, F.

Gottschall, T.

Grancini, G.

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Hamaguchi, H. O.

A. De Angelis, A. Labruyère, V. Couderc, P. Leproux, A. Tonello, H. Segawa, M. Okuno, H. Kano, D. Arnaud-Cormos, P. Lévèque, and H. O. Hamaguchi, “Time-frequency resolved analysis of a nanosecond supercontinuum source dedicated to multiplex CARS application,” Opt. Express 20(28), 29705–29716 (2012).
[Crossref] [PubMed]

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. O. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. Engl. 49(38), 6773–6777 (2010).
[Crossref] [PubMed]

Hanke, T.

Hänsch, T. W.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Herda, R.

Holtom, G. R.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. Sunney Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37(10), 1652–1654 (2012).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Hunt, J. L.

W. M. Sears, J. L. Hunt, and J. R. Stevens, “Raman scattering from polymerizing styrene. I. Vibrational mode analysis,” J. Chem. Phys. 75(4), 1589–1598 (1981).
[Crossref]

Ideguchi, T.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Jauregui, C.

Kano, H.

A. De Angelis, A. Labruyère, V. Couderc, P. Leproux, A. Tonello, H. Segawa, M. Okuno, H. Kano, D. Arnaud-Cormos, P. Lévèque, and H. O. Hamaguchi, “Time-frequency resolved analysis of a nanosecond supercontinuum source dedicated to multiplex CARS application,” Opt. Express 20(28), 29705–29716 (2012).
[Crossref] [PubMed]

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. O. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. Engl. 49(38), 6773–6777 (2010).
[Crossref] [PubMed]

Karasawa, N.

K. Tada and N. Karasawa, “Single-beam coherent anti-Stokes Raman scattering spectroscopy using both pump and soliton Stokes pulses from a photonic crystal fiber,” Appl. Phys. Express 4(9), 092701 (2011).
[Crossref]

Kieu, K. Q.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

King, M. D.

Kong, L.

Krauss, G.

Kumar, V.

Labruyère, A.

Lathia, J. D.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Lee, Y. J.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
[Crossref] [PubMed]

Lefrancois, S.

Légaré, F.

Leitenstorfer, A.

Leproux, P.

A. De Angelis, A. Labruyère, V. Couderc, P. Leproux, A. Tonello, H. Segawa, M. Okuno, H. Kano, D. Arnaud-Cormos, P. Lévèque, and H. O. Hamaguchi, “Time-frequency resolved analysis of a nanosecond supercontinuum source dedicated to multiplex CARS application,” Opt. Express 20(28), 29705–29716 (2012).
[Crossref] [PubMed]

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. O. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. Engl. 49(38), 6773–6777 (2010).
[Crossref] [PubMed]

Lévèque, P.

Limpert, J.

Liu, G.

Liu, Y.

Mammone, J. F.

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
[Crossref]

Manuccia, T. J.

Marangoni, M.

Mercier, V.

Meyer, T.

Mikami, H.

Moica, A.

Motzkus, M.

Müller, M.

Murugkar, S.

Naji, M.

Nicol, M.

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
[Crossref]

Okuno, M.

A. De Angelis, A. Labruyère, V. Couderc, P. Leproux, A. Tonello, H. Segawa, M. Okuno, H. Kano, D. Arnaud-Cormos, P. Lévèque, and H. O. Hamaguchi, “Time-frequency resolved analysis of a nanosecond supercontinuum source dedicated to multiplex CARS application,” Opt. Express 20(28), 29705–29716 (2012).
[Crossref] [PubMed]

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. O. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. Engl. 49(38), 6773–6777 (2010).
[Crossref] [PubMed]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Peyghambarian, N.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Picqué, N.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Polli, D.

Popp, J.

Potma, E. O.

Ramponi, R.

Reintjes, J.

Rich, J. N.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Rinia, H. A.

Rothhardt, M.

Schneider, P.

Sears, W. M.

W. M. Sears, J. L. Hunt, and J. R. Stevens, “Raman scattering from polymerizing styrene. I. Vibrational mode analysis,” J. Chem. Phys. 75(4), 1589–1598 (1981).
[Crossref]

Segawa, H.

Sell, A.

Selm, R.

Sharma, S. K.

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
[Crossref]

Shiozawa, M.

Shirai, M.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Smith, B.

Srivastava, P.

Stevens, J. R.

W. M. Sears, J. L. Hunt, and J. R. Stevens, “Raman scattering from polymerizing styrene. I. Vibrational mode analysis,” J. Chem. Phys. 75(4), 1589–1598 (1981).
[Crossref]

Stys, P. K.

Sunney Xie, X.

Tada, K.

K. Tada and N. Karasawa, “Single-beam coherent anti-Stokes Raman scattering spectroscopy using both pump and soliton Stokes pulses from a photonic crystal fiber,” Appl. Phys. Express 4(9), 092701 (2011).
[Crossref]

Tonello, A.

Tromberg, B. J.

Tu, H.

Tünnermann, A.

Vallée, R.

Vartiainen, E. M.

Villeneuve, A.

von Vacano, B.

Wadsworth, W. J.

Walker, A. R. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Watanabe, K.

Winterhalder, M.

Wise, F. W.

Xie, X. S.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS Endoscopy,” Opt. Express 14(10), 4427–4432 (2006).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Yang, W.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Zach, A.

Zhao, Y.

Zumbusch, A.

Angew. Chem. Int. Ed. Engl. (1)

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. O. Hamaguchi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Angew. Chem. Int. Ed. Engl. 49(38), 6773–6777 (2010).
[Crossref] [PubMed]

Appl. Phys. Express (1)

K. Tada and N. Karasawa, “Single-beam coherent anti-Stokes Raman scattering spectroscopy using both pump and soliton Stokes pulses from a photonic crystal fiber,” Appl. Phys. Express 4(9), 092701 (2011).
[Crossref]

Biomed. Opt. Express (1)

J. Chem. Phys. (1)

W. M. Sears, J. L. Hunt, and J. R. Stevens, “Raman scattering from polymerizing styrene. I. Vibrational mode analysis,” J. Chem. Phys. 75(4), 1589–1598 (1981).
[Crossref]

J. Phys. Chem. (1)

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
[Crossref]

Nat. Photonics (2)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Nature (2)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Opt. Express (11)

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010).
[Crossref] [PubMed]

E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
[Crossref] [PubMed]

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS Endoscopy,” Opt. Express 14(10), 4427–4432 (2006).
[Crossref] [PubMed]

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20(4), 4484–4493 (2012).
[Crossref] [PubMed]

S. Murugkar, B. Smith, P. Srivastava, A. Moica, M. Naji, C. Brideau, P. K. Stys, and H. Anis, “Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source,” Opt. Express 18(23), 23796–23804 (2010).
[Crossref] [PubMed]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20(19), 21010–21018 (2012).
[Crossref] [PubMed]

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express 20(24), 26583–26595 (2012).
[Crossref] [PubMed]

A. De Angelis, A. Labruyère, V. Couderc, P. Leproux, A. Tonello, H. Segawa, M. Okuno, H. Kano, D. Arnaud-Cormos, P. Lévèque, and H. O. Hamaguchi, “Time-frequency resolved analysis of a nanosecond supercontinuum source dedicated to multiplex CARS application,” Opt. Express 20(28), 29705–29716 (2012).
[Crossref] [PubMed]

Y. Liu, M. D. King, H. Tu, Y. Zhao, and S. A. Boppart, “Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum,” Opt. Express 21(7), 8269–8275 (2013).
[Crossref] [PubMed]

H. Mikami, M. Shiozawa, M. Shirai, and K. Watanabe, “Compact light source for ultrabroadband coherent anti-Stoke Raman scattering (CARS) microscopy,” Opt. Express 23(3), 2872–2878 (2015).
[Crossref] [PubMed]

H. Mikami, M. Shiozawa, M. Shirai, and K. Watanabe, “Quantitative index of arbitrary molar concentration for coherent anti-Stoke Raman scattering (CARS) spectroscopy and microscopy,” Opt. Express 23(4), 5300–5311 (2015).
[PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Other (4)

J. Cheng and X. S. Xie, eds., Coherent Raman Scattering Microscopy (CRC, 2012).

G. Agrawal, Nonlinear Fiber Optics, Fifth Edition (Academic, 2012).

NKT Photonics Application note, http://www.nktphotonics.com/files/files/Application_Note_-_Damage_threshold_of_fiber_facets.pdf

R. L. McCreery, http://www.chem.ualberta.ca/~mccreery/ramanmaterials.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A schematic of experimental setup. Attn., attenuator; PCF, photonic crystal fiber; LPF, longpass filter; Obj., objective; SPF, shortpass filter; NF, notch filter.
Fig. 2
Fig. 2 PCF input power dependence of CARS intensity of methanol at (a) 1022 cm−1, and (b) 1444 cm−1. The inset shows lengths of PCF.
Fig. 3
Fig. 3 (a) Waveforms of pump light component at the output of PCF. (b) Power spectra of PCF output. Wavenumbers were measured from 1064 nm. Both of the data were taken by a PCF with the length of 33 cm.
Fig. 4
Fig. 4 (a) Observed CARS spectra of water and a polystyrene bead. Values were magnified by 3.5 for water. (b) Normalized CARS spectrum of polystyrene. (c) Reconstructed Raman spectrum of polystyrene.
Fig. 5
Fig. 5 CARS image of 2 μm polystyrene beads. Scale bar: 5 μm.

Metrics