Abstract

A novel passively Q-switched all-fiber laser using a single mode-multimode-single mode fiber device as the saturable absorber based on the Kerr effect of multimode interference is reported. Stable Q-switched operation of an Er3+/Yb3+ co-doped fiber laser at 1559.5 nm was obtained at a pump power range of 190-510 mW with the repetition rate varying from 14.1 kHz to 35.2 kHz and the pulse duration ranging from 5.69 μs to 3.86 μs. A maximum pulse energy of 0.8 μJ at an average output power of 27.6 mW was achieved. This demonstrates a new modulation mechanism for realizing Q-switched all-fiber laser sources.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber

Kangdi Niu, Qingyun Chen, Ruyi Sun, Baoyuan Man, and Huanian Zhang
Opt. Mater. Express 7(11) 3934-3943 (2017)

All-fiber dual wavelength passive Q-switched fiber laser using a dispersion-decreasing taper fiber in a nonlinear loop mirror

Harith Ahmad, Mohamad Dernaika, and Sulaiman Wadi Harun
Opt. Express 22(19) 22794-22801 (2014)

Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser

Zhe Kang, Xingyuan Guo, Zhixu Jia, Yang Xu, Lai Liu, Dan Zhao, Guanshi Qin, and Weiping Qin
Opt. Mater. Express 3(11) 1986-1991 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 µm,” Electron. Lett. 22(3), 159–160 (1986).
    [Crossref]
  2. G. P. Lees and T. P. Newson, “Diode pumped high power simultaneously Q-switched and self mode-locked erbium doped fibre laser,” Electron. Lett. 32(4), 332–333 (1996).
    [Crossref]
  3. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 µm,” Opt. Lett. 24(6), 388–390 (1999).
    [Crossref] [PubMed]
  4. D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett. 22(1), 9–11 (2010).
    [Crossref]
  5. B. Dong, C.-Y. Liaw, J. Hao, and J. Hu, “Nanotube Q-switched low-threshold linear cavity tunable erbium-doped fiber laser,” Appl. Opt. 49(31), 5989–5992 (2010).
    [Crossref]
  6. C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
    [Crossref] [PubMed]
  7. S. Liu, X. Zhu, G. Zhu, K. Balakrishnan, J. Zong, K. Wiersma, A. Chavez-Pirson, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched Ho3+-doped ZBLAN fiber laser at 1190 nm,” Opt. Lett. 40(2), 147–150 (2015).
    [Crossref] [PubMed]
  8. C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8 µm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24(19), 1741–1744 (2012).
    [Crossref]
  9. T.-Y. Tsai and Y.-C. Fang, “A saturable absorber Q-switched all-fiber ring laser,” Opt. Express 17(3), 1429–1434 (2009).
    [Crossref] [PubMed]
  10. J. Ren, S. Wang, Z. Cheng, H. Yu, H. Zhang, Y. Chen, L. Mei, and P. Wang, “Passively Q-switched nanosecond erbium-doped fiber laser with MoS2 saturable absorber,” Opt. Express 23(5), 5607–5613 (2015).
    [Crossref] [PubMed]
  11. L. A. Zenteno, E. Snitzer, H. Po, R. Tumminelli, and F. Hakimi, “Gain switching of a Nd3+-doped fiber laser,” Opt. Lett. 14(13), 671–673 (1989).
    [Crossref] [PubMed]
  12. T.-Y. Tsai, Y.-C. Fang, Z.-C. Lee, and H.-X. Tsao, “All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch,” Opt. Lett. 34(19), 2891–2893 (2009).
    [Crossref] [PubMed]
  13. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22(5), 298–300 (1997).
    [Crossref] [PubMed]
  14. A. A. Fotiadi, P. Mégret, and M. Blondel, “Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror,” Opt. Lett. 29(10), 1078–1080 (2004).
    [Crossref] [PubMed]
  15. Y. Tang, X. Li, and Q. J. Wang, “High-power passively Q-switched thulium fiber laser with distributed stimulated Brillouin scattering,” Opt. Lett. 38(24), 5474–5477 (2013).
    [Crossref] [PubMed]
  16. S. W. Allison and G. T. Gillies, “Observations of and applications for self-imaging in optical fibers,” Appl. Opt. 33(10), 1802–1805 (1994).
    [Crossref] [PubMed]
  17. R. Selvas, I. Torres-Gomez, A. Martinez-Rios, J. Alvarez-Chavez, D. May-Arrioja, P. Likamwa, A. Mehta, and E. Johnson, “Wavelength tuning of fiber lasers using multimode interference effects,” Opt. Express 13(23), 9439–9445 (2005).
    [Crossref] [PubMed]
  18. A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. LiKamWa, “Widely tunable erbium-doped fiber laser based on multimode interference effect,” Opt. Express 18(2), 591–597 (2010).
    [Crossref] [PubMed]
  19. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
    [Crossref] [PubMed]
  20. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22(2), 469–477 (2004).
    [Crossref]
  21. P. Hofmann, A. Mafi, C. Jollivet, T. Tiess, N. Peyghambarian, and A. Schulzgen, “Detailed investigation of mode-field adapters utilizing multimode-interference in graded index fibers,” J. Lightwave Technol. 30(14), 2289–2298 (2012).
    [Crossref]
  22. A. Mafi, P. Hofmann, C. J. Salvin, and A. Schülzgen, “Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,” Opt. Lett. 36(18), 3596–3598 (2011).
    [Crossref] [PubMed]
  23. Y. Gong, T. Zhao, Y.-J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23(11), 679–681 (2011).
    [Crossref]
  24. P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
    [Crossref] [PubMed]
  25. I. D. Villar, A. B. Socorro, J. M. Corres, F. J. Arregui, and I. R. Matias, “Refractometric sensors based on multimode interference in a thin-film coated single-mode-multimode-single-mode structure with reflection configuration,” Appl. Opt. 53(18), 3913–3919 (2014).
    [Crossref] [PubMed]
  26. X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, “Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers,” Opt. Express 16(21), 16632–16645 (2008).
    [PubMed]
  27. X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33(9), 908–910 (2008).
    [Crossref] [PubMed]
  28. X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15(1), 71–78 (2009).
    [Crossref]
  29. X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, “Generation of controllable nondiffracting beams using multimode optical fibers,” Appl. Phys. Lett. 94(20), 201102 (2009).
    [Crossref]
  30. X. Zhu, A. Schülzgen, H. Wei, K. Kieu, and N. Peyghambarian, “White light Bessel-like beams generated by miniature all-fiber device,” Opt. Express 19(12), 11365–11374 (2011).
    [Crossref] [PubMed]
  31. X. Zhu, A. Schülzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18(7), 7506–7520 (2010).
    [Crossref] [PubMed]
  32. X. Zhu, “Multimode interference in optical fibers and its applications in fiber lasers and amplifiers,” Ph. D. dissertation, University of Arizona (2008).
  33. E. Nazemosadat and A. Mafi, “Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber,” J. Opt. Soc. Am. B 30(5), 1357–1367 (2013).

2015 (2)

2014 (1)

2013 (4)

2012 (2)

2011 (3)

2010 (4)

2009 (4)

X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15(1), 71–78 (2009).
[Crossref]

X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, “Generation of controllable nondiffracting beams using multimode optical fibers,” Appl. Phys. Lett. 94(20), 201102 (2009).
[Crossref]

T.-Y. Tsai and Y.-C. Fang, “A saturable absorber Q-switched all-fiber ring laser,” Opt. Express 17(3), 1429–1434 (2009).
[Crossref] [PubMed]

T.-Y. Tsai, Y.-C. Fang, Z.-C. Lee, and H.-X. Tsao, “All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch,” Opt. Lett. 34(19), 2891–2893 (2009).
[Crossref] [PubMed]

2008 (2)

2006 (1)

2005 (1)

2004 (2)

1999 (1)

1997 (1)

1996 (1)

G. P. Lees and T. P. Newson, “Diode pumped high power simultaneously Q-switched and self mode-locked erbium doped fibre laser,” Electron. Lett. 32(4), 332–333 (1996).
[Crossref]

1994 (1)

1989 (1)

1986 (1)

R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 µm,” Electron. Lett. 22(3), 159–160 (1986).
[Crossref]

Allison, S. W.

Alvarez-Chavez, J.

Antonio-Lopez, J. E.

Arregui, F. J.

Balakrishnan, K.

Blondel, M.

Bo, L.

Brambilla, G.

Castillo-Guzman, A.

Chavez-Pirson, A.

Chen, Y.

Cheng, Z.

Chernikov, S. V.

Corres, J. M.

Ding, M.

Dong, B.

B. Dong, C.-Y. Liaw, J. Hao, and J. Hu, “Nanotube Q-switched low-threshold linear cavity tunable erbium-doped fiber laser,” Appl. Opt. 49(31), 5989–5992 (2010).
[Crossref]

D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Estudillo-Ayala, J.

Fang, Y.-C.

Farrell, G.

Fotiadi, A. A.

Gapontsev, V. P.

Gillies, G. T.

Gini, E.

Gong, Y.

Y. Gong, T. Zhao, Y.-J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23(11), 679–681 (2011).
[Crossref]

Gu, X.

Guan, C.

Hakimi, F.

Han, L.

Hao, J.

Häring, R.

Hofmann, P.

Hu, J.

Johnson, E.

Johnson, E. G.

Jollivet, C.

Keller, U.

Kieu, K.

Lee, Z.-C.

Lees, G. P.

G. P. Lees and T. P. Newson, “Diode pumped high power simultaneously Q-switched and self mode-locked erbium doped fibre laser,” Electron. Lett. 32(4), 332–333 (1996).
[Crossref]

Li, H.

Li, L.

X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15(1), 71–78 (2009).
[Crossref]

X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, “Generation of controllable nondiffracting beams using multimode optical fibers,” Appl. Phys. Lett. 94(20), 201102 (2009).
[Crossref]

X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33(9), 908–910 (2008).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, “Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers,” Opt. Express 16(21), 16632–16645 (2008).
[PubMed]

Li, X.

Liaw, C.-Y.

LiKamWa, P.

Liu, S.

Liu, W.-K.

D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Mafi, A.

Martinez-Rios, A.

Matias, I. R.

May-Arrioja, D.

May-Arrioja, D. A.

Mears, R. J.

R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 µm,” Electron. Lett. 22(3), 159–160 (1986).
[Crossref]

Mégret, P.

Mehta, A.

Mei, L.

Melchior, H.

Mohammed, W. S.

Moloney, J. V.

Nazemosadat, E.

Newson, T. P.

G. P. Lees and T. P. Newson, “Diode pumped high power simultaneously Q-switched and self mode-locked erbium doped fibre laser,” Electron. Lett. 32(4), 332–333 (1996).
[Crossref]

Norwood, R. A.

Offerhaus, H. L.

Paschotta, R.

Payne, D. N.

R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 µm,” Electron. Lett. 22(3), 159–160 (1986).
[Crossref]

Peyghambarian, N.

S. Liu, X. Zhu, G. Zhu, K. Balakrishnan, J. Zong, K. Wiersma, A. Chavez-Pirson, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched Ho3+-doped ZBLAN fiber laser at 1190 nm,” Opt. Lett. 40(2), 147–150 (2015).
[Crossref] [PubMed]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8 µm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

P. Hofmann, A. Mafi, C. Jollivet, T. Tiess, N. Peyghambarian, and A. Schulzgen, “Detailed investigation of mode-field adapters utilizing multimode-interference in graded index fibers,” J. Lightwave Technol. 30(14), 2289–2298 (2012).
[Crossref]

X. Zhu, A. Schülzgen, H. Wei, K. Kieu, and N. Peyghambarian, “White light Bessel-like beams generated by miniature all-fiber device,” Opt. Express 19(12), 11365–11374 (2011).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18(7), 7506–7520 (2010).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15(1), 71–78 (2009).
[Crossref]

X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, “Generation of controllable nondiffracting beams using multimode optical fibers,” Appl. Phys. Lett. 94(20), 201102 (2009).
[Crossref]

X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33(9), 908–910 (2008).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, “Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers,” Opt. Express 16(21), 16632–16645 (2008).
[PubMed]

Po, H.

Poole, S. B.

R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 µm,” Electron. Lett. 22(3), 159–160 (1986).
[Crossref]

Rao, Y.-J.

Y. Gong, T. Zhao, Y.-J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23(11), 679–681 (2011).
[Crossref]

Reekie, L.

R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 µm,” Electron. Lett. 22(3), 159–160 (1986).
[Crossref]

Ren, J.

Richardson, D. J.

Salvin, C. J.

Schulzgen, A.

Schülzgen, A.

A. Mafi, P. Hofmann, C. J. Salvin, and A. Schülzgen, “Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,” Opt. Lett. 36(18), 3596–3598 (2011).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Wei, K. Kieu, and N. Peyghambarian, “White light Bessel-like beams generated by miniature all-fiber device,” Opt. Express 19(12), 11365–11374 (2011).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18(7), 7506–7520 (2010).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, “Generation of controllable nondiffracting beams using multimode optical fibers,” Appl. Phys. Lett. 94(20), 201102 (2009).
[Crossref]

X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15(1), 71–78 (2009).
[Crossref]

X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33(9), 908–910 (2008).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, “Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers,” Opt. Express 16(21), 16632–16645 (2008).
[PubMed]

Selvas, R.

Selvas-Aguilar, R.

Semenova, Y.

Smith, P. W. E.

Snitzer, E.

Socorro, A. B.

Song, F.

Suzuki, S.

Tang, Y.

Taylor, J. R.

Temyanko, V. L.

X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15(1), 71–78 (2009).
[Crossref]

X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33(9), 908–910 (2008).
[Crossref] [PubMed]

Tiess, T.

Torres-Gomez, I.

Tsai, T.-Y.

Tsao, H.-X.

Tumminelli, R.

Villar, I. D.

Wang, F.

Wang, P.

Wang, Q.

Wang, Q. J.

Wang, S.

Wei, C.

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8 µm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

Wei, H.

Wei, L.

D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Wiersma, K.

Wu, Q.

Wu, Y.

Y. Gong, T. Zhao, Y.-J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23(11), 679–681 (2011).
[Crossref]

Xu, Y.

Yu, H.

Zenteno, L. A.

Zhang, H.

Zhao, T.

Y. Gong, T. Zhao, Y.-J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23(11), 679–681 (2011).
[Crossref]

Zhou, D.-P.

D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Zhu, G.

Zhu, X.

S. Liu, X. Zhu, G. Zhu, K. Balakrishnan, J. Zong, K. Wiersma, A. Chavez-Pirson, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched Ho3+-doped ZBLAN fiber laser at 1190 nm,” Opt. Lett. 40(2), 147–150 (2015).
[Crossref] [PubMed]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8 µm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

X. Zhu, A. Schülzgen, H. Wei, K. Kieu, and N. Peyghambarian, “White light Bessel-like beams generated by miniature all-fiber device,” Opt. Express 19(12), 11365–11374 (2011).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18(7), 7506–7520 (2010).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, “Generation of controllable nondiffracting beams using multimode optical fibers,” Appl. Phys. Lett. 94(20), 201102 (2009).
[Crossref]

X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15(1), 71–78 (2009).
[Crossref]

X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33(9), 908–910 (2008).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, “Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers,” Opt. Express 16(21), 16632–16645 (2008).
[PubMed]

Zhu, Y.

Zong, J.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, “Generation of controllable nondiffracting beams using multimode optical fibers,” Appl. Phys. Lett. 94(20), 201102 (2009).
[Crossref]

Electron. Lett. (2)

R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 µm,” Electron. Lett. 22(3), 159–160 (1986).
[Crossref]

G. P. Lees and T. P. Newson, “Diode pumped high power simultaneously Q-switched and self mode-locked erbium doped fibre laser,” Electron. Lett. 32(4), 332–333 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15(1), 71–78 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (3)

D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Y. Gong, T. Zhao, Y.-J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23(11), 679–681 (2011).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8 µm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (7)

X. Zhu, A. Schülzgen, H. Wei, K. Kieu, and N. Peyghambarian, “White light Bessel-like beams generated by miniature all-fiber device,” Opt. Express 19(12), 11365–11374 (2011).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18(7), 7506–7520 (2010).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, “Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers,” Opt. Express 16(21), 16632–16645 (2008).
[PubMed]

T.-Y. Tsai and Y.-C. Fang, “A saturable absorber Q-switched all-fiber ring laser,” Opt. Express 17(3), 1429–1434 (2009).
[Crossref] [PubMed]

J. Ren, S. Wang, Z. Cheng, H. Yu, H. Zhang, Y. Chen, L. Mei, and P. Wang, “Passively Q-switched nanosecond erbium-doped fiber laser with MoS2 saturable absorber,” Opt. Express 23(5), 5607–5613 (2015).
[Crossref] [PubMed]

R. Selvas, I. Torres-Gomez, A. Martinez-Rios, J. Alvarez-Chavez, D. May-Arrioja, P. Likamwa, A. Mehta, and E. Johnson, “Wavelength tuning of fiber lasers using multimode interference effects,” Opt. Express 13(23), 9439–9445 (2005).
[Crossref] [PubMed]

A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. LiKamWa, “Widely tunable erbium-doped fiber laser based on multimode interference effect,” Opt. Express 18(2), 591–597 (2010).
[Crossref] [PubMed]

Opt. Lett. (12)

W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
[Crossref] [PubMed]

R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 µm,” Opt. Lett. 24(6), 388–390 (1999).
[Crossref] [PubMed]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 µm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

S. Liu, X. Zhu, G. Zhu, K. Balakrishnan, J. Zong, K. Wiersma, A. Chavez-Pirson, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched Ho3+-doped ZBLAN fiber laser at 1190 nm,” Opt. Lett. 40(2), 147–150 (2015).
[Crossref] [PubMed]

L. A. Zenteno, E. Snitzer, H. Po, R. Tumminelli, and F. Hakimi, “Gain switching of a Nd3+-doped fiber laser,” Opt. Lett. 14(13), 671–673 (1989).
[Crossref] [PubMed]

T.-Y. Tsai, Y.-C. Fang, Z.-C. Lee, and H.-X. Tsao, “All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch,” Opt. Lett. 34(19), 2891–2893 (2009).
[Crossref] [PubMed]

S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22(5), 298–300 (1997).
[Crossref] [PubMed]

A. A. Fotiadi, P. Mégret, and M. Blondel, “Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror,” Opt. Lett. 29(10), 1078–1080 (2004).
[Crossref] [PubMed]

Y. Tang, X. Li, and Q. J. Wang, “High-power passively Q-switched thulium fiber laser with distributed stimulated Brillouin scattering,” Opt. Lett. 38(24), 5474–5477 (2013).
[Crossref] [PubMed]

X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33(9), 908–910 (2008).
[Crossref] [PubMed]

A. Mafi, P. Hofmann, C. J. Salvin, and A. Schülzgen, “Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,” Opt. Lett. 36(18), 3596–3598 (2011).
[Crossref] [PubMed]

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

Other (1)

X. Zhu, “Multimode interference in optical fibers and its applications in fiber lasers and amplifiers,” Ph. D. dissertation, University of Arizona (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the Er3+/Yb3+ co-doped fiber laser Q-switched by an SMS fiber device.
Fig. 2
Fig. 2 Transmission spectrum of the SMS fiber device fabricated by splicing two SMF-28 fiber segments to a 4.9-cm long multimode fiber segment with a core diameter of 50 µm.
Fig. 3
Fig. 3 (a) Measured average output power of the Q-switched Er3+/Yb3+ co-doped fiber laser as a function of the launched pump power; (b) the spectrum of the Q-switched fiber laser at a pump power of 374 mW.
Fig. 4
Fig. 4 Pulse trains of the Q-switched Er3+/Yb3+ co-doped fiber laser at different pump powers: (a) Ppump = 190 mW (b) Ppump = 374 mW (c) Ppump = 510 mW and (d) their corresponding pulse envelopes.
Fig. 5
Fig. 5 (a) Measured repetition rate and pulse duration; (b) calculated pulse energy and peak power as a function of the pump power.
Fig. 6
Fig. 6 RF spectrum of the Q-switched fiber laser pumped at 510 mW. Inset: RF spectrum over a frequency range of 0-500 kHz.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E SM (r,ϕ,z=0)= n=1 N C n e n (r,ϕ,z=0) .
E MM (r,ϕ,z)= n=1 N C n e n (r,ϕ,0) e i β n z = e i β 1 z n=1 N C n e n (r,ϕ,0) e i( β n β 1 )z .
( β n β 1 ) z selfimaging =Δ β n z selfimaging = m n 2π. ( m n is integer )
Δ n eff,n L= m n λ 0 . ( m n is integer )
Δ n eff,n (I)L= m n λ. ( m n is integer )
λ SI = Δ n eff,n ( I high ) Δ n eff,n ( I low ) λ 0 .

Metrics