Abstract

We present a novel integrated mechanical and structural photoacoustic imaging (IMS-PAI) for atherosclerosis characterization. A quasi-continuous laser with pulse width of 22 ns and repetition frequency of 25 KHz was used to realize simultaneous acquisition of PA phase and temporal intensity. An algorithm utilizing sound propagation model in conjunction with temporal PA intensity was developed and applied to correct the phase deviation caused by uneven tissue surface. Integration of en-face mechanical and in-depth structural PA imaging was verified by a tissue-mimicking phantom. Moreover, complementary visualization of en-face viscoelasticity distribution and in-depth structural anatomy of an atherosclerotic tissue was achieved, which was consistent with the histology. The results demonstrated the IMS-PAI has an attractive synergy in comprehensive atherosclerosis characterization.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mechanical characterization of intraluminal tissue with phase-resolved photoacoustic viscoelasticity endoscopy

Conggui Chen, Yue Zhao, Sihua Yang, and Da Xing
Biomed. Opt. Express 6(12) 4975-4980 (2015)

Multimodal characterization of compositional, structural and functional features of human atherosclerotic plaques

Yang Sun, Abhijit J. Chaudhari, Matthew Lam, Hongtao Xie, Diego R. Yankelevich, Jennifer Phipps, Jing Liu, Michael C. Fishbein, Jonathan M. Cannata, K. Kirk Shung, and Laura Marcu
Biomed. Opt. Express 2(8) 2288-2298 (2011)

Simultaneous imaging of atherosclerotic plaque composition and structure with dual-mode photoacoustic and optical coherence tomography

Shanshan Shang, Zhongjiang Chen, Yue Zhao, Sihua Yang, and Da Xing
Opt. Express 25(2) 530-539 (2017)

References

  • View by:
  • |
  • |
  • |

  1. U. Sadat, Z. Teng, and J. H. Gillard, “Biomechanical structural stresses of atherosclerotic plaques,” Expert Rev. Cardiovasc. Ther. 8(10), 1469–1481 (2010).
    [Crossref] [PubMed]
  2. Z. Teng, A. J. Brown, P. A. Calvert, R. A. Parker, D. R. Obaid, Y. Huang, S. P. Hoole, N. E. West, J. H. Gillard, and M. R. Bennett, “Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study,” Circ Cardiovasc Imaging 7(3), 461–470 (2014).
    [Crossref] [PubMed]
  3. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [Crossref] [PubMed]
  4. M. Omar, J. Gateau, and V. Ntziachristos, “Raster-scan optoacoustic mesoscopy in the 25-125 MHz range,” Opt. Lett. 38(14), 2472–2474 (2013).
    [Crossref] [PubMed]
  5. R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3(7), 1724–1731 (2012).
    [Crossref] [PubMed]
  6. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  7. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref] [PubMed]
  8. P. Hai, J. Yao, K. I. Maslov, Y. Zhou, and L. V. Wang, “Near-infrared optical-resolution photoacoustic microscopy,” Opt. Lett. 39(17), 5192–5195 (2014).
    [Crossref] [PubMed]
  9. J. Brunker and P. Beard, “Pulsed photoacoustic Doppler flowmetry using time-domain cross-correlation: accuracy, resolution and scalability,” J. Acoust. Soc. Am. 132(3), 1780–1791 (2012).
    [Crossref] [PubMed]
  10. Z. Tan, Y. Liao, Y. Wu, Z. Tang, and R. K. Wang, “Photoacoustic microscopy achieved by microcavity synchronous parallel acquisition technique,” Opt. Express 20(5), 5802–5808 (2012).
    [Crossref] [PubMed]
  11. L. Xiang, B. Wang, L. Ji, and H. Jiang, “4-D photoacoustic tomography,” Sci Rep 3, 1113 (2013).
    [Crossref] [PubMed]
  12. Z. Yang, J. Chen, J. Yao, R. Lin, J. Meng, C. Liu, J. Yang, X. Li, L. Wang, and L. Song, “Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo,” Opt. Express 22(2), 1500–1511 (2014).
    [PubMed]
  13. A. M. Caravaca-Aguirre, D. B. Conkey, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement,” Opt. Express 21(22), 26671–26676 (2013).
    [Crossref] [PubMed]
  14. J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
    [Crossref] [PubMed]
  15. Y. H. Wang, S. P. Chen, A. H. Liao, Y. C. Yang, C. R. Lee, C. H. Wu, P. C. Wu, T. M. Liu, C. R. Wang, and P. C. Li, “Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy,” Sci Rep 4, 5685 (2014).
    [PubMed]
  16. G. Gao, S. Yang, and D. Xing, “Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement,” Opt. Lett. 36(17), 3341–3343 (2011).
    [Crossref] [PubMed]
  17. Y. Zhao, S. Yang, C. Chen, and D. Xing, “Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement,” Opt. Lett. 39(9), 2565–2568 (2014).
    [Crossref] [PubMed]
  18. Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
    [Crossref] [PubMed]
  19. P. Hai, J. Yao, K. I. Maslov, Y. Zhou, and L. V. Wang, “Near-infrared optical-resolution photoacoustic microscopy,” Opt. Lett. 39(17), 5192–5195 (2014).
    [Crossref] [PubMed]
  20. L. W. Lake and C. D. Armeniades, “Structure-property relations of aortic tissue,” Trans. Am. Soc. Artif. Intern. Organs 18(1), 202–208 (1972).
    [Crossref] [PubMed]
  21. L. Yoo, V. Gupta, C. Lee, P. Kavehpore, and J. L. Demer, “Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models,” Biomech. Model. Mechanobiol. 10(6), 901–914 (2011).
    [Crossref] [PubMed]
  22. C. L. Tsai, J. C. Chen, and W. J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” J. Med. Biol. Eng. 21, 7–14 (2001).

2014 (7)

Z. Teng, A. J. Brown, P. A. Calvert, R. A. Parker, D. R. Obaid, Y. Huang, S. P. Hoole, N. E. West, J. H. Gillard, and M. R. Bennett, “Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study,” Circ Cardiovasc Imaging 7(3), 461–470 (2014).
[Crossref] [PubMed]

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

Y. H. Wang, S. P. Chen, A. H. Liao, Y. C. Yang, C. R. Lee, C. H. Wu, P. C. Wu, T. M. Liu, C. R. Wang, and P. C. Li, “Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy,” Sci Rep 4, 5685 (2014).
[PubMed]

Z. Yang, J. Chen, J. Yao, R. Lin, J. Meng, C. Liu, J. Yang, X. Li, L. Wang, and L. Song, “Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo,” Opt. Express 22(2), 1500–1511 (2014).
[PubMed]

Y. Zhao, S. Yang, C. Chen, and D. Xing, “Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement,” Opt. Lett. 39(9), 2565–2568 (2014).
[Crossref] [PubMed]

P. Hai, J. Yao, K. I. Maslov, Y. Zhou, and L. V. Wang, “Near-infrared optical-resolution photoacoustic microscopy,” Opt. Lett. 39(17), 5192–5195 (2014).
[Crossref] [PubMed]

P. Hai, J. Yao, K. I. Maslov, Y. Zhou, and L. V. Wang, “Near-infrared optical-resolution photoacoustic microscopy,” Opt. Lett. 39(17), 5192–5195 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (4)

Z. Tan, Y. Liao, Y. Wu, Z. Tang, and R. K. Wang, “Photoacoustic microscopy achieved by microcavity synchronous parallel acquisition technique,” Opt. Express 20(5), 5802–5808 (2012).
[Crossref] [PubMed]

R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, and D. Razansky, “Fast scanning coaxial optoacoustic microscopy,” Biomed. Opt. Express 3(7), 1724–1731 (2012).
[Crossref] [PubMed]

J. Brunker and P. Beard, “Pulsed photoacoustic Doppler flowmetry using time-domain cross-correlation: accuracy, resolution and scalability,” J. Acoust. Soc. Am. 132(3), 1780–1791 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

2011 (3)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

L. Yoo, V. Gupta, C. Lee, P. Kavehpore, and J. L. Demer, “Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models,” Biomech. Model. Mechanobiol. 10(6), 901–914 (2011).
[Crossref] [PubMed]

G. Gao, S. Yang, and D. Xing, “Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement,” Opt. Lett. 36(17), 3341–3343 (2011).
[Crossref] [PubMed]

2010 (2)

U. Sadat, Z. Teng, and J. H. Gillard, “Biomechanical structural stresses of atherosclerotic plaques,” Expert Rev. Cardiovasc. Ther. 8(10), 1469–1481 (2010).
[Crossref] [PubMed]

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

2004 (1)

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref] [PubMed]

2001 (1)

C. L. Tsai, J. C. Chen, and W. J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” J. Med. Biol. Eng. 21, 7–14 (2001).

1972 (1)

L. W. Lake and C. D. Armeniades, “Structure-property relations of aortic tissue,” Trans. Am. Soc. Artif. Intern. Organs 18(1), 202–208 (1972).
[Crossref] [PubMed]

Armeniades, C. D.

L. W. Lake and C. D. Armeniades, “Structure-property relations of aortic tissue,” Trans. Am. Soc. Artif. Intern. Organs 18(1), 202–208 (1972).
[Crossref] [PubMed]

Beard, P.

J. Brunker and P. Beard, “Pulsed photoacoustic Doppler flowmetry using time-domain cross-correlation: accuracy, resolution and scalability,” J. Acoust. Soc. Am. 132(3), 1780–1791 (2012).
[Crossref] [PubMed]

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

Bennett, M. R.

Z. Teng, A. J. Brown, P. A. Calvert, R. A. Parker, D. R. Obaid, Y. Huang, S. P. Hoole, N. E. West, J. H. Gillard, and M. R. Bennett, “Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study,” Circ Cardiovasc Imaging 7(3), 461–470 (2014).
[Crossref] [PubMed]

Brown, A. J.

Z. Teng, A. J. Brown, P. A. Calvert, R. A. Parker, D. R. Obaid, Y. Huang, S. P. Hoole, N. E. West, J. H. Gillard, and M. R. Bennett, “Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study,” Circ Cardiovasc Imaging 7(3), 461–470 (2014).
[Crossref] [PubMed]

Brunker, J.

J. Brunker and P. Beard, “Pulsed photoacoustic Doppler flowmetry using time-domain cross-correlation: accuracy, resolution and scalability,” J. Acoust. Soc. Am. 132(3), 1780–1791 (2012).
[Crossref] [PubMed]

Calvert, P. A.

Z. Teng, A. J. Brown, P. A. Calvert, R. A. Parker, D. R. Obaid, Y. Huang, S. P. Hoole, N. E. West, J. H. Gillard, and M. R. Bennett, “Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study,” Circ Cardiovasc Imaging 7(3), 461–470 (2014).
[Crossref] [PubMed]

Caravaca-Aguirre, A. M.

Chen, C.

Chen, J.

Chen, J. C.

C. L. Tsai, J. C. Chen, and W. J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” J. Med. Biol. Eng. 21, 7–14 (2001).

Chen, Q.

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref] [PubMed]

Chen, S. P.

Y. H. Wang, S. P. Chen, A. H. Liao, Y. C. Yang, C. R. Lee, C. H. Wu, P. C. Wu, T. M. Liu, C. R. Wang, and P. C. Li, “Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy,” Sci Rep 4, 5685 (2014).
[PubMed]

Conkey, D. B.

Demer, J. L.

L. Yoo, V. Gupta, C. Lee, P. Kavehpore, and J. L. Demer, “Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models,” Biomech. Model. Mechanobiol. 10(6), 901–914 (2011).
[Crossref] [PubMed]

Dove, J. D.

Gao, G.

Gateau, J.

Gillard, J. H.

Z. Teng, A. J. Brown, P. A. Calvert, R. A. Parker, D. R. Obaid, Y. Huang, S. P. Hoole, N. E. West, J. H. Gillard, and M. R. Bennett, “Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study,” Circ Cardiovasc Imaging 7(3), 461–470 (2014).
[Crossref] [PubMed]

U. Sadat, Z. Teng, and J. H. Gillard, “Biomechanical structural stresses of atherosclerotic plaques,” Expert Rev. Cardiovasc. Ther. 8(10), 1469–1481 (2010).
[Crossref] [PubMed]

Gupta, V.

L. Yoo, V. Gupta, C. Lee, P. Kavehpore, and J. L. Demer, “Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models,” Biomech. Model. Mechanobiol. 10(6), 901–914 (2011).
[Crossref] [PubMed]

Hai, P.

Hoole, S. P.

Z. Teng, A. J. Brown, P. A. Calvert, R. A. Parker, D. R. Obaid, Y. Huang, S. P. Hoole, N. E. West, J. H. Gillard, and M. R. Bennett, “Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study,” Circ Cardiovasc Imaging 7(3), 461–470 (2014).
[Crossref] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Huang, Y.

Z. Teng, A. J. Brown, P. A. Calvert, R. A. Parker, D. R. Obaid, Y. Huang, S. P. Hoole, N. E. West, J. H. Gillard, and M. R. Bennett, “Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study,” Circ Cardiovasc Imaging 7(3), 461–470 (2014).
[Crossref] [PubMed]

Ji, L.

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4-D photoacoustic tomography,” Sci Rep 3, 1113 (2013).
[Crossref] [PubMed]

Ji, X.

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

Jiang, H.

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4-D photoacoustic tomography,” Sci Rep 3, 1113 (2013).
[Crossref] [PubMed]

Ju, H.

Kavehpore, P.

L. Yoo, V. Gupta, C. Lee, P. Kavehpore, and J. L. Demer, “Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models,” Biomech. Model. Mechanobiol. 10(6), 901–914 (2011).
[Crossref] [PubMed]

Lake, L. W.

L. W. Lake and C. D. Armeniades, “Structure-property relations of aortic tissue,” Trans. Am. Soc. Artif. Intern. Organs 18(1), 202–208 (1972).
[Crossref] [PubMed]

Lee, C.

L. Yoo, V. Gupta, C. Lee, P. Kavehpore, and J. L. Demer, “Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models,” Biomech. Model. Mechanobiol. 10(6), 901–914 (2011).
[Crossref] [PubMed]

Lee, C. R.

Y. H. Wang, S. P. Chen, A. H. Liao, Y. C. Yang, C. R. Lee, C. H. Wu, P. C. Wu, T. M. Liu, C. R. Wang, and P. C. Li, “Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy,” Sci Rep 4, 5685 (2014).
[PubMed]

Li, P. C.

Y. H. Wang, S. P. Chen, A. H. Liao, Y. C. Yang, C. R. Lee, C. H. Wu, P. C. Wu, T. M. Liu, C. R. Wang, and P. C. Li, “Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy,” Sci Rep 4, 5685 (2014).
[PubMed]

Li, X.

Liao, A. H.

Y. H. Wang, S. P. Chen, A. H. Liao, Y. C. Yang, C. R. Lee, C. H. Wu, P. C. Wu, T. M. Liu, C. R. Wang, and P. C. Li, “Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy,” Sci Rep 4, 5685 (2014).
[PubMed]

Liao, Y.

Lin, R.

Liu, C.

Liu, T. M.

Y. H. Wang, S. P. Chen, A. H. Liao, Y. C. Yang, C. R. Lee, C. H. Wu, P. C. Wu, T. M. Liu, C. R. Wang, and P. C. Li, “Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy,” Sci Rep 4, 5685 (2014).
[PubMed]

Ma, R.

Maslov, K. I.

Meng, J.

Murray, T. W.

Ntziachristos, V.

Obaid, D. R.

Z. Teng, A. J. Brown, P. A. Calvert, R. A. Parker, D. R. Obaid, Y. Huang, S. P. Hoole, N. E. West, J. H. Gillard, and M. R. Bennett, “Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study,” Circ Cardiovasc Imaging 7(3), 461–470 (2014).
[Crossref] [PubMed]

Omar, M.

Parker, R. A.

Z. Teng, A. J. Brown, P. A. Calvert, R. A. Parker, D. R. Obaid, Y. Huang, S. P. Hoole, N. E. West, J. H. Gillard, and M. R. Bennett, “Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study,” Circ Cardiovasc Imaging 7(3), 461–470 (2014).
[Crossref] [PubMed]

Piestun, R.

Razansky, D.

Sadat, U.

U. Sadat, Z. Teng, and J. H. Gillard, “Biomechanical structural stresses of atherosclerotic plaques,” Expert Rev. Cardiovasc. Ther. 8(10), 1469–1481 (2010).
[Crossref] [PubMed]

Shoham, S.

Song, L.

Söntges, S.

Tan, Z.

Tang, Z.

Teng, Z.

Z. Teng, A. J. Brown, P. A. Calvert, R. A. Parker, D. R. Obaid, Y. Huang, S. P. Hoole, N. E. West, J. H. Gillard, and M. R. Bennett, “Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study,” Circ Cardiovasc Imaging 7(3), 461–470 (2014).
[Crossref] [PubMed]

U. Sadat, Z. Teng, and J. H. Gillard, “Biomechanical structural stresses of atherosclerotic plaques,” Expert Rev. Cardiovasc. Ther. 8(10), 1469–1481 (2010).
[Crossref] [PubMed]

Tsai, C. L.

C. L. Tsai, J. C. Chen, and W. J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” J. Med. Biol. Eng. 21, 7–14 (2001).

Wang, B.

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4-D photoacoustic tomography,” Sci Rep 3, 1113 (2013).
[Crossref] [PubMed]

Wang, C. R.

Y. H. Wang, S. P. Chen, A. H. Liao, Y. C. Yang, C. R. Lee, C. H. Wu, P. C. Wu, T. M. Liu, C. R. Wang, and P. C. Li, “Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy,” Sci Rep 4, 5685 (2014).
[PubMed]

Wang, L.

Wang, L. V.

Wang, R. K.

Wang, W. J.

C. L. Tsai, J. C. Chen, and W. J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” J. Med. Biol. Eng. 21, 7–14 (2001).

Wang, Y.

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref] [PubMed]

Wang, Y. H.

Y. H. Wang, S. P. Chen, A. H. Liao, Y. C. Yang, C. R. Lee, C. H. Wu, P. C. Wu, T. M. Liu, C. R. Wang, and P. C. Li, “Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy,” Sci Rep 4, 5685 (2014).
[PubMed]

West, N. E.

Z. Teng, A. J. Brown, P. A. Calvert, R. A. Parker, D. R. Obaid, Y. Huang, S. P. Hoole, N. E. West, J. H. Gillard, and M. R. Bennett, “Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study,” Circ Cardiovasc Imaging 7(3), 461–470 (2014).
[Crossref] [PubMed]

Wu, C. H.

Y. H. Wang, S. P. Chen, A. H. Liao, Y. C. Yang, C. R. Lee, C. H. Wu, P. C. Wu, T. M. Liu, C. R. Wang, and P. C. Li, “Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy,” Sci Rep 4, 5685 (2014).
[PubMed]

Wu, P. C.

Y. H. Wang, S. P. Chen, A. H. Liao, Y. C. Yang, C. R. Lee, C. H. Wu, P. C. Wu, T. M. Liu, C. R. Wang, and P. C. Li, “Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy,” Sci Rep 4, 5685 (2014).
[PubMed]

Wu, Y.

Xiang, L.

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4-D photoacoustic tomography,” Sci Rep 3, 1113 (2013).
[Crossref] [PubMed]

Xing, D.

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

Y. Zhao, S. Yang, C. Chen, and D. Xing, “Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement,” Opt. Lett. 39(9), 2565–2568 (2014).
[Crossref] [PubMed]

G. Gao, S. Yang, and D. Xing, “Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement,” Opt. Lett. 36(17), 3341–3343 (2011).
[Crossref] [PubMed]

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref] [PubMed]

Yang, J.

Yang, S.

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

Y. Zhao, S. Yang, C. Chen, and D. Xing, “Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement,” Opt. Lett. 39(9), 2565–2568 (2014).
[Crossref] [PubMed]

G. Gao, S. Yang, and D. Xing, “Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement,” Opt. Lett. 36(17), 3341–3343 (2011).
[Crossref] [PubMed]

Yang, Y. C.

Y. H. Wang, S. P. Chen, A. H. Liao, Y. C. Yang, C. R. Lee, C. H. Wu, P. C. Wu, T. M. Liu, C. R. Wang, and P. C. Li, “Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy,” Sci Rep 4, 5685 (2014).
[PubMed]

Yang, Z.

Yao, J.

Yoo, L.

L. Yoo, V. Gupta, C. Lee, P. Kavehpore, and J. L. Demer, “Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models,” Biomech. Model. Mechanobiol. 10(6), 901–914 (2011).
[Crossref] [PubMed]

Zeng, Y.

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

Zhao, Y.

Zhou, Q.

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

Zhou, Y.

Biomech. Model. Mechanobiol. (1)

L. Yoo, V. Gupta, C. Lee, P. Kavehpore, and J. L. Demer, “Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models,” Biomech. Model. Mechanobiol. 10(6), 901–914 (2011).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Circ Cardiovasc Imaging (1)

Z. Teng, A. J. Brown, P. A. Calvert, R. A. Parker, D. R. Obaid, Y. Huang, S. P. Hoole, N. E. West, J. H. Gillard, and M. R. Bennett, “Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (biomechanical evaluation of atheromatous coronary arteries) study,” Circ Cardiovasc Imaging 7(3), 461–470 (2014).
[Crossref] [PubMed]

Expert Rev. Cardiovasc. Ther. (1)

U. Sadat, Z. Teng, and J. H. Gillard, “Biomechanical structural stresses of atherosclerotic plaques,” Expert Rev. Cardiovasc. Ther. 8(10), 1469–1481 (2010).
[Crossref] [PubMed]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

J. Brunker and P. Beard, “Pulsed photoacoustic Doppler flowmetry using time-domain cross-correlation: accuracy, resolution and scalability,” J. Acoust. Soc. Am. 132(3), 1780–1791 (2012).
[Crossref] [PubMed]

J. Am. Coll. Cardiol. (1)

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref] [PubMed]

J. Med. Biol. Eng. (1)

C. L. Tsai, J. C. Chen, and W. J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” J. Med. Biol. Eng. 21, 7–14 (2001).

Nat. Methods (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

Phys. Med. Biol. (1)

Y. Wang, D. Xing, Y. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49(14), 3117–3124 (2004).
[Crossref] [PubMed]

Sci Rep (2)

Y. H. Wang, S. P. Chen, A. H. Liao, Y. C. Yang, C. R. Lee, C. H. Wu, P. C. Wu, T. M. Liu, C. R. Wang, and P. C. Li, “Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy,” Sci Rep 4, 5685 (2014).
[PubMed]

L. Xiang, B. Wang, L. Ji, and H. Jiang, “4-D photoacoustic tomography,” Sci Rep 3, 1113 (2013).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Trans. Am. Soc. Artif. Intern. Organs (1)

L. W. Lake and C. D. Armeniades, “Structure-property relations of aortic tissue,” Trans. Am. Soc. Artif. Intern. Organs 18(1), 202–208 (1972).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of IMS-PAI system. CL: collimating lens, MO: microscope objective, UT: ultrasonic transducer, DAS: data acquisition system.
Fig. 2
Fig. 2 (a) Agar phantom with a 1.14 mm high step (side view). (b) Temporal PA intensity at α and β, “U1” and “U2” correspond to upper boundary, “L” correspond to lower boundary. (c) PA phase correction based on temporal PA intensity.
Fig. 3
Fig. 3 (a) Phantom structure. (b) En-face PA viscoelasticity and absorption images. (c) Integrated PA sections.
Fig. 4
Fig. 4 (a) Photograph of the atherosclerotic tissue with a fatty streak, region within the dashed frame is scanning area. (b) En-face PA viscoelasticity and absorption images. (c) Integrated PA sections and corresponding histology. The sections were stained with Oil red O (red) to evaluate lipid accumulation and counterstained with hematoxylin (blue) to visualize cell nuclei.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ = arc tan η ω / E
p ( r , t , λ ) K μ a ( r , λ ) φ ( r , t )

Metrics