Abstract

We propose pillar integrated silicon waveguides to exploit the entire transparent window of silicon. These geometries posses a broad and flat dispersion (from 2 to 6 μm) with four zero dispersion wavelengths. We calculate supercontinuum generation spanning over two octaves (2 to >8 μm) with long wavelengths interacting weakly with the lossy substrate. These structures have higher mode confinement in the silicon - away from the substrate, which makes them substrate independent and are promising for exploring new nonlinear phenomena and highly sensitive molecular sensing over the entire silicon’s transparency range.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reverse pillar chalcogenide glass waveguides with ultraflat and low dispersion profile over an ultrawide bandwidth

Yuxiu Shi, Peipeng Xu, Xiang Shen, Shixun Dai, and Qiuhua Nie
Appl. Opt. 55(5) 1017-1021 (2016)

Mid-IR supercontinuum generated in low-dispersion Ge-on-Si waveguides pumped by sub-ps pulses

Minghui Yang, Yuhao Guo, Jing Wang, Zhaohong Han, Kazumi Wada, Lionel C. Kimerling, Anuradha M. Agarwal, Jurgen Michel, Guifang Li, and Lin Zhang
Opt. Express 25(14) 16116-16122 (2017)

Mid-infrared octave spanning supercontinuum generation to 8.5  μm in silicon-germanium waveguides

Milan Sinobad, Christelle Monat, Barry Luther-davies, Pan Ma, Stephen Madden, David J. Moss, Arnan Mitchell, David Allioux, Regis Orobtchouk, Salim Boutami, Jean-Michel Hartmann, Jean-Marc Fedeli, and Christian Grillet
Optica 5(4) 360-366 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nature Photon. 4(8), 495–497 (2010).
    [Crossref]
  2. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A: Pure Appl. Opt. 8(10), 840–848 (2006).
    [Crossref]
  3. G. Z. Mashanovich, M. M. Milosevic, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011).
    [Crossref] [PubMed]
  4. M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Opt. Express 101(12), 7112–7119 (2011).
  5. R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39(15), 4518–4521 (2014).
    [Crossref] [PubMed]
  6. T. B. Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
    [Crossref]
  7. R. J. Shankar, B. Irfan, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
    [Crossref]
  8. A. L. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21) 213501 (2010).
    [Crossref]
  9. C. Y. Wong, Z. Cheng, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
    [Crossref]
  10. Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W. C. Lai, P. Wray, and R. T. Chen, “Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths,” Opt. Lett. 39(10), 3070–3073 (2014).
    [Crossref] [PubMed]
  11. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
    [Crossref] [PubMed]
  12. D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).
  13. N. Singh, D. D. Hudson, Y. Yu, C. Grillet, A. Read, P. Atanackovic, S. G. Duval, S. J. madden, D. J. Moss, B. L. Davies, and B. J. Eggleton, “Silicon-on-Sapphire Nanowire for Mid-IR Supercontinuum Generation,” CLEO: Science and Innovations (SF2D)2015.
  14. M. Brun, P. Labeye, G. Grand, J. M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides in mid-IR application,” Opt. Express,  22(1), 508–518 (2014).
    [Crossref] [PubMed]
  15. R. Halir, Y. Okawachi, J.S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
    [Crossref] [PubMed]
  16. S. Khan, J. Chiles, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett 102(12), 121104 (2013).
    [Crossref]
  17. L. Zhang, Y. Yue, Y. H. Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express,  18(12), 13187–13193 (2010).
    [Crossref] [PubMed]
  18. L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, and A. E. Willner, “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Opt. Express,  19(12), 11584–11590 (2011).
    [Crossref] [PubMed]
  19. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
    [Crossref] [PubMed]
  20. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal,” Opt. Express 25(11), 790–792 (2000).
  21. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
    [Crossref] [PubMed]
  22. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20(2), 1685–1690 (2012).
    [Crossref] [PubMed]
  23. P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
    [Crossref] [PubMed]
  24. R. V. Laer, B. Kuyken, D. V. Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nature Photon. 9(3), 199–203 (2015).
    [Crossref]
  25. J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Opt. Lett. 103(15), 151106 (2013).
  26. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photonics 1(1), 162–235 (2009).
    [Crossref]
  27. I. H. Malitson, “Refraction and dispersion of synthetic sapphire,” J. Opt. Soc. Am. 52(12), 1377–1379 (1962).
    [Crossref]
  28. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2012).
  29. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  30. S. Afshar and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with sub-wavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
    [Crossref]
  31. X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7(6), 1054–1064 (2013).
    [Crossref]
  32. T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, “Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21(26), 32192–32198 (2013).
    [Crossref]
  33. Y. Yu, X. Gai, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. L. Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8(5), 1–7 (2014).
    [Crossref]
  34. M. M. Naiini, C. Henkel, G. B. Malm, and M. Ostling, “CMOS compatible ALD high-k double slot grating couplers for on-chip optical interconnects,” Solid-State Device Research Conference (ESSDERC) (2012).

2015 (1)

R. V. Laer, B. Kuyken, D. V. Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nature Photon. 9(3), 199–203 (2015).
[Crossref]

2014 (4)

2013 (6)

T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, “Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21(26), 32192–32198 (2013).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7(6), 1054–1064 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Opt. Lett. 103(15), 151106 (2013).

R. J. Shankar, B. Irfan, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

S. Khan, J. Chiles, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett 102(12), 121104 (2013).
[Crossref]

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (5)

2010 (4)

2009 (2)

S. Afshar and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with sub-wavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
[Crossref]

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photonics 1(1), 162–235 (2009).
[Crossref]

2006 (3)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A: Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[Crossref] [PubMed]

2000 (1)

A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal,” Opt. Express 25(11), 790–792 (2000).

1962 (1)

Afshar, S.

Agarwal, A.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2012).

Andres, P.

A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal,” Opt. Express 25(11), 790–792 (2000).

Asher, W.

Atanackovic, P.

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
[Crossref] [PubMed]

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, A. Read, P. Atanackovic, S. G. Duval, S. J. madden, D. J. Moss, B. L. Davies, and B. J. Eggleton, “Silicon-on-Sapphire Nanowire for Mid-IR Supercontinuum Generation,” CLEO: Science and Innovations (SF2D)2015.

Baehr-Jones, T.

A. L. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21) 213501 (2010).
[Crossref]

Baets, R.

R. V. Laer, B. Kuyken, D. V. Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nature Photon. 9(3), 199–203 (2015).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7(6), 1054–1064 (2013).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
[Crossref] [PubMed]

Beausoleil, R. G.

Bedoya, A. C.

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

Boulila, F.

Brun, M.

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A: Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

Campenhout, J. V.

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7(6), 1054–1064 (2013).
[Crossref]

Carras, M.

Chakravarty, S.

Chen, R. T.

Chen, X.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photonics 1(1), 162–235 (2009).
[Crossref]

Chen, Y. M.

C. Y. Wong, Z. Cheng, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

Cheng, Z.

C. Y. Wong, Z. Cheng, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

Chiles, J.

S. Khan, J. Chiles, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett 102(12), 121104 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Opt. Lett. 103(15), 151106 (2013).

Choi, D. Y.

Y. Yu, X. Gai, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. L. Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8(5), 1–7 (2014).
[Crossref]

Chong, H. M. H.

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Opt. Express 101(12), 7112–7119 (2011).

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cui, Y.

Dadap, J. I.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photonics 1(1), 162–235 (2009).
[Crossref]

Davies, B. L.

Y. Yu, X. Gai, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. L. Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8(5), 1–7 (2014).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7(6), 1054–1064 (2013).
[Crossref]

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, A. Read, P. Atanackovic, S. G. Duval, S. J. madden, D. J. Moss, B. L. Davies, and B. J. Eggleton, “Silicon-on-Sapphire Nanowire for Mid-IR Supercontinuum Generation,” CLEO: Science and Innovations (SF2D)2015.

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

Debbarma, S.

Y. Yu, X. Gai, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. L. Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8(5), 1–7 (2014).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dulkeith, E.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photonics 1(1), 162–235 (2009).
[Crossref]

Duval, S. G.

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, A. Read, P. Atanackovic, S. G. Duval, S. J. madden, D. J. Moss, B. L. Davies, and B. J. Eggleton, “Silicon-on-Sapphire Nanowire for Mid-IR Supercontinuum Generation,” CLEO: Science and Innovations (SF2D)2015.

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

Duvall, S. G.

Eggleton, B. J.

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
[Crossref] [PubMed]

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, A. Read, P. Atanackovic, S. G. Duval, S. J. madden, D. J. Moss, B. L. Davies, and B. J. Eggleton, “Silicon-on-Sapphire Nanowire for Mid-IR Supercontinuum Generation,” CLEO: Science and Innovations (SF2D)2015.

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A: Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

Emerson, N. G.

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Opt. Express 101(12), 7112–7119 (2011).

Fathpour, S.

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Opt. Lett. 103(15), 151106 (2013).

S. Khan, J. Chiles, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett 102(12), 121104 (2013).
[Crossref]

Ferrando, A.

A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal,” Opt. Express 25(11), 790–792 (2000).

Foster, M. A.

Fung, C. K. Y.

C. Y. Wong, Z. Cheng, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

Gaeta, A.

Gaeta, A. L.

Gai, X.

Y. Yu, X. Gai, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. L. Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8(5), 1–7 (2014).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7(6), 1054–1064 (2013).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gosciniak, J.

Grand, G.

Green, M. J.

Green, W. M. J.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photonics 1(1), 162–235 (2009).
[Crossref]

Griffith, A. G.

Grillet, C.

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
[Crossref] [PubMed]

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, A. Read, P. Atanackovic, S. G. Duval, S. J. madden, D. J. Moss, B. L. Davies, and B. J. Eggleton, “Silicon-on-Sapphire Nanowire for Mid-IR Supercontinuum Generation,” CLEO: Science and Innovations (SF2D)2015.

Halir, R.

Hartmann, J. M.

Henkel, C.

M. M. Naiini, C. Henkel, G. B. Malm, and M. Ostling, “CMOS compatible ALD high-k double slot grating couplers for on-chip optical interconnects,” Solid-State Device Research Conference (ESSDERC) (2012).

Hensley, J.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Hochberg, M.

A. L. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21) 213501 (2010).
[Crossref]

T. B. Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
[Crossref]

Hosseini, A.

Hsieh, I. W.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photonics 1(1), 162–235 (2009).
[Crossref]

Hu, J.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Hu, Y.

Hudson, D.

Hudson, D. D.

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, A. Read, P. Atanackovic, S. G. Duval, S. J. madden, D. J. Moss, B. L. Davies, and B. J. Eggleton, “Silicon-on-Sapphire Nanowire for Mid-IR Supercontinuum Generation,” CLEO: Science and Innovations (SF2D)2015.

Ilic, R.

T. B. Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
[Crossref]

A. L. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21) 213501 (2010).
[Crossref]

Irfan, B.

R. J. Shankar, B. Irfan, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Jaberansary, E.

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Opt. Express 101(12), 7112–7119 (2011).

Jackson, S. D.

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
[Crossref] [PubMed]

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

Ji, W.

Jones, T. B.

Khan, S.

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Opt. Lett. 103(15), 151106 (2013).

S. Khan, J. Chiles, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett 102(12), 121104 (2013).
[Crossref]

Kimerling, L. C.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Kuyken, B.

R. V. Laer, B. Kuyken, D. V. Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nature Photon. 9(3), 199–203 (2015).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7(6), 1054–1064 (2013).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
[Crossref] [PubMed]

Labeye, P.

Laer, R. V.

R. V. Laer, B. Kuyken, D. V. Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nature Photon. 9(3), 199–203 (2015).
[Crossref]

Lai, W. C.

Lamont, M. R. E.

Lau, R. K. W.

Levy, J.S.

Li, F.

Li, Y. H.

Lin, P. T.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Lin, Q.

Lipson, M.

Liu, X.

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
[Crossref] [PubMed]

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photonics 1(1), 162–235 (2009).
[Crossref]

Liu, Y.

A. L. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21) 213501 (2010).
[Crossref]

Loncar, M.

R. J. Shankar, B. Irfan, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Luzinov, I.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Ma, J.

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Opt. Lett. 103(15), 151106 (2013).

Ma, P.

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7(6), 1054–1064 (2013).
[Crossref]

Madden, S. J.

Y. Yu, X. Gai, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. L. Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8(5), 1–7 (2014).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7(6), 1054–1064 (2013).
[Crossref]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
[Crossref] [PubMed]

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, A. Read, P. Atanackovic, S. G. Duval, S. J. madden, D. J. Moss, B. L. Davies, and B. J. Eggleton, “Silicon-on-Sapphire Nanowire for Mid-IR Supercontinuum Generation,” CLEO: Science and Innovations (SF2D)2015.

Magi, E.

Malitson, I. H.

Malm, G. B.

M. M. Naiini, C. Henkel, G. B. Malm, and M. Ostling, “CMOS compatible ALD high-k double slot grating couplers for on-chip optical interconnects,” Solid-State Device Research Conference (ESSDERC) (2012).

Manolatou, C.

Masaud, T. M. B.

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Opt. Express 101(12), 7112–7119 (2011).

Mashanovich, G. Z.

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Opt. Express 101(12), 7112–7119 (2011).

G. Z. Mashanovich, M. M. Milosevic, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011).
[Crossref] [PubMed]

Milosevic, M. M.

G. Z. Mashanovich, M. M. Milosevic, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011).
[Crossref] [PubMed]

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Opt. Express 101(12), 7112–7119 (2011).

Miret, J. J.

A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal,” Opt. Express 25(11), 790–792 (2000).

Moghe, Y.

Monro, T. M.

Moss, D. J.

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
[Crossref] [PubMed]

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, A. Read, P. Atanackovic, S. G. Duval, S. J. madden, D. J. Moss, B. L. Davies, and B. J. Eggleton, “Silicon-on-Sapphire Nanowire for Mid-IR Supercontinuum Generation,” CLEO: Science and Innovations (SF2D)2015.

Musgraves, J. D.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Naiini, M. M.

M. M. Naiini, C. Henkel, G. B. Malm, and M. Ostling, “CMOS compatible ALD high-k double slot grating couplers for on-chip optical interconnects,” Solid-State Device Research Conference (ESSDERC) (2012).

Nedeljkovic, M.

G. Z. Mashanovich, M. M. Milosevic, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011).
[Crossref] [PubMed]

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Opt. Express 101(12), 7112–7119 (2011).

Nicoletti, S.

O’Brien, C.

Okawachi, Y.

Osgood, R. M.

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
[Crossref] [PubMed]

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photonics 1(1), 162–235 (2009).
[Crossref]

Ostling, M.

M. M. Naiini, C. Henkel, G. B. Malm, and M. Ostling, “CMOS compatible ALD high-k double slot grating couplers for on-chip optical interconnects,” Solid-State Device Research Conference (ESSDERC) (2012).

Owens, N.

Painter, O.

Palombo, S.

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

Panoiu, N. C.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photonics 1(1), 162–235 (2009).
[Crossref]

Penkov, B.

Qian, G.

Read, A.

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
[Crossref] [PubMed]

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, A. Read, P. Atanackovic, S. G. Duval, S. J. madden, D. J. Moss, B. L. Davies, and B. J. Eggleton, “Silicon-on-Sapphire Nanowire for Mid-IR Supercontinuum Generation,” CLEO: Science and Innovations (SF2D)2015.

Reed, G. T.

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Opt. Express 101(12), 7112–7119 (2011).

Richardson, K.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Roelkens, G.

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7(6), 1054–1064 (2013).
[Crossref]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
[Crossref] [PubMed]

Schmidt, B. S.

Shankar, R. J.

R. J. Shankar, B. Irfan, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Sharping, J. E.

Silvestre, E.

A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal,” Opt. Express 25(11), 790–792 (2000).

Singh, N.

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, A. Read, P. Atanackovic, S. G. Duval, S. J. madden, D. J. Moss, B. L. Davies, and B. J. Eggleton, “Silicon-on-Sapphire Nanowire for Mid-IR Supercontinuum Generation,” CLEO: Science and Innovations (SF2D)2015.

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

Singh, V.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nature Photon. 4(8), 495–497 (2010).
[Crossref]

Soref, R. A.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A: Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

Spott, A.

Spott, A. L.

A. L. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21) 213501 (2010).
[Crossref]

Subbaraman, H.

Tan, D. T. H.

Teo, E. J.

Thourhout, D. V.

R. V. Laer, B. Kuyken, D. V. Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nature Photon. 9(3), 199–203 (2015).
[Crossref]

Tsang, H. K.

C. Y. Wong, Z. Cheng, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

Turner, A. C.

Venkatram, N.

Verheyen, P.

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7(6), 1054–1064 (2013).
[Crossref]

Vlasov, Y. A.

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photonics 1(1), 162–235 (2009).
[Crossref]

Wang, J.

Wang, R.

Y. Yu, X. Gai, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. L. Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8(5), 1–7 (2014).
[Crossref]

Wang, T.

Willner, A. E.

Wong, C. Y.

C. Y. Wong, Z. Cheng, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

Wray, P.

Xiong, B.

Xu, K.

C. Y. Wong, Z. Cheng, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

Xu, X.

Yan, Y.

Yang, Z.

Y. Yu, X. Gai, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. L. Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8(5), 1–7 (2014).
[Crossref]

Yu, Y.

Y. Yu, X. Gai, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. L. Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8(5), 1–7 (2014).
[Crossref]

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7(6), 1054–1064 (2013).
[Crossref]

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, A. Read, P. Atanackovic, S. G. Duval, S. J. madden, D. J. Moss, B. L. Davies, and B. J. Eggleton, “Silicon-on-Sapphire Nanowire for Mid-IR Supercontinuum Generation,” CLEO: Science and Innovations (SF2D)2015.

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

Yue, Y.

Zhang, L.

Zou, Y.

Adv. Opt. Photonics (1)

R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photonics 1(1), 162–235 (2009).
[Crossref]

Appl. Phys. Lett (1)

S. Khan, J. Chiles, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett 102(12), 121104 (2013).
[Crossref]

Appl. Phys. Lett. (2)

R. J. Shankar, B. Irfan, and M. Lončar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

A. L. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett. 97(21) 213501 (2010).
[Crossref]

IEEE Photon. J. (1)

C. Y. Wong, Z. Cheng, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning,” IEEE Photon. J. 4(4), 1095–1102 (2012).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A: Pure Appl. Opt. 8(10), 840–848 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

Lab Chip (1)

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013).
[Crossref] [PubMed]

Laser Photon. Rev. (2)

X. Gai, Y. Yu, B. Kuyken, P. Ma, S. J. Madden, J. V. Campenhout, P. Verheyen, G. Roelkens, R. Baets, and B. L. Davies, “Nonlinear absorption and refraction in crystalline silicon in the mid-infrared,” Laser Photon. Rev. 7(6), 1054–1064 (2013).
[Crossref]

Y. Yu, X. Gai, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. L. Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8(5), 1–7 (2014).
[Crossref]

Nature Photon. (2)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nature Photon. 4(8), 495–497 (2010).
[Crossref]

R. V. Laer, B. Kuyken, D. V. Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nature Photon. 9(3), 199–203 (2015).
[Crossref]

Opt. Express (13)

M. M. Milosevic, M. Nedeljkovic, T. M. B. Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Opt. Express 101(12), 7112–7119 (2011).

A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal,” Opt. Express 25(11), 790–792 (2000).

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[Crossref] [PubMed]

S. Afshar and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with sub-wavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
[Crossref]

T. B. Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
[Crossref]

L. Zhang, Y. Yue, Y. H. Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express,  18(12), 13187–13193 (2010).
[Crossref] [PubMed]

G. Z. Mashanovich, M. M. Milosevic, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19(8), 7112–7119 (2011).
[Crossref] [PubMed]

L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, and A. E. Willner, “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Opt. Express,  19(12), 11584–11590 (2011).
[Crossref] [PubMed]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19(16), 15212–15220 (2011).
[Crossref] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
[Crossref] [PubMed]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20(2), 1685–1690 (2012).
[Crossref] [PubMed]

T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, “Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21(26), 32192–32198 (2013).
[Crossref]

M. Brun, P. Labeye, G. Grand, J. M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss SiGe graded index waveguides in mid-IR application,” Opt. Express,  22(1), 508–518 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (4)

M. M. Naiini, C. Henkel, G. B. Malm, and M. Ostling, “CMOS compatible ALD high-k double slot grating couplers for on-chip optical interconnects,” Solid-State Device Research Conference (ESSDERC) (2012).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2012).

D. D. Hudson, N. Singh, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palombo, D. J. Moss, B. L. Davies, S. J. madden, and B. J. Eggleton, “Octave spanning mid-IR supercontinuum generation in a silicon-on-sapphire waveguide,” Nonlinear Photonics Advanced Photonics Post Deadline Papers (JTu6A) (2014).

N. Singh, D. D. Hudson, Y. Yu, C. Grillet, A. Read, P. Atanackovic, S. G. Duval, S. J. madden, D. J. Moss, B. L. Davies, and B. J. Eggleton, “Silicon-on-Sapphire Nanowire for Mid-IR Supercontinuum Generation,” CLEO: Science and Innovations (SF2D)2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Figure 1
Figure 1 (a) T waveguide made of silicon (cyan) on a sapphire substrate (purple) and (b) inverted-L waveguide.
Figure 2
Figure 2 Dispersion of the T waveguide with flat dispersion (inset) and the silicon material dispersion. (a) TE mode profile at 1st ZDW and b) at 4th ZDW.
Figure 3
Figure 3 TE mode profile at 3.6 μm for, (a) Strip of the T waveguide (neff, 2.48) with dispersion (black dashed dot). (b) T waveguide in air (neff, 2.54) with dispersion (blue dashed line). (c) T waveguide (neff, 2.55), with dispersion (green solid line).
Figure 4
Figure 4 (a) Dispersion shifts of T waveguide into the normal regime for width change from 2 to 2.4 μm at 100 nm steps. The green arrow indicates the regions on different dispersion curves having similar trend (only shown for width and thickness variations) (b) A larger dispersion shifts for thickness (t) variation of 200 nm at 50 nm steps. (c) Dispersion shifts into anomalous region with the height variation from 600 to 800 nm. (d) Dispersion shifts into the normal region for a increase in pedestal width (Pw) by 400 nm with 100 nm steps.
Figure 5
Figure 5 Dispersion of L waveguide with flat dispersion (inset) and the silicon material dispersion. (a) TE mode profile at 1st ZDW and (b) at the 4th ZDW.
Figure 6
Figure 6 TE mode profile at 4.1 μm for, (a) Strip of L waveguide (neff, 2.47) with dispersion (black dashed dot line). (b) L waveguide in air (neff, 2.49) with dispersion (blue dashed line). (c) L waveguide (neff, 2.5), with dispersion (green solid line).
Figure 7
Figure 7 Dispersion shifts (a) into the normal regime for width change in L waveguides from 2 to 2.4 μm at 100 nm steps, (b) for thickness (t) variation of 200 nm. (c) Dispersion shift into normal (∼5.5 μm) with height variation, (d) for variation in pedestal width (Pw) from 300 to 700 nm the dispersion is modified unlike for the T waveguide in Fig. 4(d).
Figure 8
Figure 8 Supercontinuum spectra of L and T waveguides. (a) SCG for L waveguide (w = 2.01 μm, h = 700 nm, t = 465 nm, Pw = 500 nm), with dispersion profile (inset), pumped at 4.1 μm. (b) SCG for T waveguide (w = 2.2 μm, h = 700 nm, t = 423 nm, Pw = 435 nm), with dispersion profile in the inset, pumped at 3.6 μm. The orange dashed curve represents the input pulse. (c), (e), (d) & (f) are the pulse evolution in the time and spectral domain for L and T waveguide respectively.
Figure 9
Figure 9 The calculated γ vs wavelength for L and T waveguides is based on measured n2 [32]. The calculated Aeff for T and L is shown in inset.
Figure 10
Figure 10 (a) Energy confinement vs wavelength for the T waveguide and for, (b) L waveguide with dimensions used for the SCG modelling in Fig. 8.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E z = α ( ω ) 2 E + m 2 i ( m + 1 ) β m m ! m E t m + i ( γ ( ω 0 ) + i γ t ) E t R ( t t ) | E | 2 d t ( γ 4 pa 2 A eff 3 | E | 6 3 pa ( ω ) ) E .

Metrics