Abstract

Recent advances in digital technologies, such as high-speed computers and large-format digital imagers, have led to a burgeoning interest in the science and engineering of digital holographic microscopy (DHM). Here we report on a novel off-axis DHM, based on a twin-beam optical design, which avoids the limitations of prior systems, and provides many advantages, including compactness, intrinsic stability, robustness against misalignment, ease of use, and cost. These advantages are traded for a physically constrained sample volume, as well as a fixed fringe spacing. The first trade is not overly restrictive for most applications, and the latter provides for a pre-set assembly alignment that optimizes the spatial frequency sampling. Moreover, our new design supports use in both routine laboratory settings as well as extreme environments without any sacrifice in performance, enabling ready observation of microbial species in the field. The instrument design is presented in detail here, along with a demonstration of bacterial video imaging at sub-micrometer resolution at temperatures down to –15 °C.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact lensless off-axis transmission digital holographic microscope

Manon Rostykus and Christophe Moser
Opt. Express 25(14) 16652-16659 (2017)

Resolution optimization of an off-axis lensless digital holographic microscope

E. Serabyn, K. Liewer, and J. K. Wallace
Appl. Opt. 57(1) A172-A180 (2018)

Compact, lensless digital holographic microscope for remote microbiology

Eugene Serabyn, Kurt Liewer, Chris Lindensmith, Kent Wallace, and Jay Nadeau
Opt. Express 24(25) 28540-28548 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. Knox, “Holographic microscopy as a technique for recording dynamic microscopic subjects,” Science 153(3739), 989–990 (1966).
    [Crossref] [PubMed]
  2. A. Chengala, M. Hondzo, and J. Sheng, “Microalga propels along vorticity direction in a shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052704 (2013).
    [Crossref] [PubMed]
  3. J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104(44), 17512–17517 (2007).
    [Crossref] [PubMed]
  4. J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. U.S.A. 107(5), 2082–2087 (2010).
    [Crossref] [PubMed]
  5. S. M. Vater, J. Finlay, M. E. Callow, J. A. Callow, T. Ederth, B. Liedberg, M. Grunze, and A. Rosenhahn, “Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces,” Biofouling 31(2), 229–239 (2015).
    [Crossref] [PubMed]
  6. N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
    [Crossref] [PubMed]
  7. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [Crossref] [PubMed]
  8. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
    [Crossref] [PubMed]
  9. P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
    [Crossref] [PubMed]
  10. H. Janeckova, P. Vesely, and R. Chmelik, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res. 29(6), 2339–2345 (2009).
    [PubMed]
  11. M. Falck Miniotis, A. Mukwaya, and A. Gjörloff Wingren, “Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells,” PLoS ONE 9(9), e106546 (2014).
    [Crossref] [PubMed]
  12. T.-W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. U.S.A. 109(40), 16018–16022 (2012).
    [Crossref] [PubMed]
  13. T. Fenchel, “Microbial behavior in a heterogeneous world,” Science 296(5570), 1068–1071 (2002).
    [Crossref] [PubMed]
  14. T. Fenchel, “Eppur si muove: many water column bacteria are motile,” Aquat. Microb. Ecol. 24(2), 197–201 (2001).
    [Crossref]
  15. J. G. Mitchell and K. Kogure, “Bacterial motility: links to the environment and a driving force for microbial physics,” FEMS Microbiol. Ecol. 55(1), 3–16 (2006).
    [Crossref] [PubMed]
  16. E. M. Purcell, “Life at low Reynolds number,” Am. J. Phys. 45(1), 3–11 (1977).
    [Crossref]
  17. M. J. Rivera and D. Y. Sumner, “Unraveling the three-dimensional morphology of archean microbialites,” J. Paleontol. 88(4), 719–726 (2014).
    [Crossref]
  18. U. Schnars and W. Jüptner, “Direct Recording of Holograms by a CCD Target and Numerical Reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
    [Crossref] [PubMed]
  19. U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
    [Crossref]
  20. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [Crossref] [PubMed]
  21. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [Crossref] [PubMed]
  22. C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
    [Crossref] [PubMed]
  23. F. Zhang, G. Pedrini, and W. Osten, “Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution,” Opt. Lett. 31(11), 1633–1635 (2006).
    [Crossref] [PubMed]
  24. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
    [Crossref] [PubMed]
  25. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
    [Crossref] [PubMed]
  26. M. Molaei and J. Sheng, “Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm,” Opt. Express 22(26), 32119–32137 (2014).
    [Crossref] [PubMed]
  27. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [Crossref] [PubMed]
  28. S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jerico, and J. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58(4), 701–705 (2010).
    [Crossref]
  29. J. Kühn, B. Niraula, K. Liewer, J. Kent Wallace, E. Serabyn, E. Graff, C. Lindensmith, and J. L. Nadeau, “A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms,” Rev. Sci. Instrum. 85(12), 123113 (2014).
    [Crossref] [PubMed]
  30. K. Junge, H. Eicken, and J. W. Deming, “Motility of colwellia psychrerythraea strain 34H at subzero temperatures,” Appl. Environ. Microbiol. 69(7), 4282–4284 (2003).
    [Crossref] [PubMed]
  31. Y. Gong and I. F. Sbalzarini, “Image enhancement by gradient distribution specification,” Proc. ACCV, 12th Asian Conference on Computer Vision Workshop on Emerging Topics in Image Enhancement and Restoration, w7–p3 (2015).
    [Crossref]

2015 (1)

S. M. Vater, J. Finlay, M. E. Callow, J. A. Callow, T. Ederth, B. Liedberg, M. Grunze, and A. Rosenhahn, “Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces,” Biofouling 31(2), 229–239 (2015).
[Crossref] [PubMed]

2014 (4)

M. Falck Miniotis, A. Mukwaya, and A. Gjörloff Wingren, “Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells,” PLoS ONE 9(9), e106546 (2014).
[Crossref] [PubMed]

M. J. Rivera and D. Y. Sumner, “Unraveling the three-dimensional morphology of archean microbialites,” J. Paleontol. 88(4), 719–726 (2014).
[Crossref]

M. Molaei and J. Sheng, “Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm,” Opt. Express 22(26), 32119–32137 (2014).
[Crossref] [PubMed]

J. Kühn, B. Niraula, K. Liewer, J. Kent Wallace, E. Serabyn, E. Graff, C. Lindensmith, and J. L. Nadeau, “A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms,” Rev. Sci. Instrum. 85(12), 123113 (2014).
[Crossref] [PubMed]

2013 (1)

A. Chengala, M. Hondzo, and J. Sheng, “Microalga propels along vorticity direction in a shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052704 (2013).
[Crossref] [PubMed]

2012 (2)

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

T.-W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. U.S.A. 109(40), 16018–16022 (2012).
[Crossref] [PubMed]

2011 (1)

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

2010 (2)

J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. U.S.A. 107(5), 2082–2087 (2010).
[Crossref] [PubMed]

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jerico, and J. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58(4), 701–705 (2010).
[Crossref]

2009 (1)

H. Janeckova, P. Vesely, and R. Chmelik, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res. 29(6), 2339–2345 (2009).
[PubMed]

2007 (1)

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

2006 (4)

J. G. Mitchell and K. Kogure, “Bacterial motility: links to the environment and a driving force for microbial physics,” FEMS Microbiol. Ecol. 55(1), 3–16 (2006).
[Crossref] [PubMed]

F. Zhang, G. Pedrini, and W. Osten, “Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution,” Opt. Lett. 31(11), 1633–1635 (2006).
[Crossref] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[Crossref] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[Crossref] [PubMed]

2005 (2)

2003 (1)

K. Junge, H. Eicken, and J. W. Deming, “Motility of colwellia psychrerythraea strain 34H at subzero temperatures,” Appl. Environ. Microbiol. 69(7), 4282–4284 (2003).
[Crossref] [PubMed]

2002 (2)

U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

T. Fenchel, “Microbial behavior in a heterogeneous world,” Science 296(5570), 1068–1071 (2002).
[Crossref] [PubMed]

2001 (2)

T. Fenchel, “Eppur si muove: many water column bacteria are motile,” Aquat. Microb. Ecol. 24(2), 197–201 (2001).
[Crossref]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

1997 (1)

1994 (1)

1977 (1)

E. M. Purcell, “Life at low Reynolds number,” Am. J. Phys. 45(1), 3–11 (1977).
[Crossref]

1966 (1)

C. Knox, “Holographic microscopy as a technique for recording dynamic microscopic subjects,” Science 153(3739), 989–990 (1966).
[Crossref] [PubMed]

Adolf, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

Adolf, J. E.

J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. U.S.A. 107(5), 2082–2087 (2010).
[Crossref] [PubMed]

Aspert, N.

Belas, R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

Boss, D.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

Bredebusch, I.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[Crossref] [PubMed]

Callow, J. A.

S. M. Vater, J. Finlay, M. E. Callow, J. A. Callow, T. Ederth, B. Liedberg, M. Grunze, and A. Rosenhahn, “Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces,” Biofouling 31(2), 229–239 (2015).
[Crossref] [PubMed]

Callow, M. E.

S. M. Vater, J. Finlay, M. E. Callow, J. A. Callow, T. Ederth, B. Liedberg, M. Grunze, and A. Rosenhahn, “Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces,” Biofouling 31(2), 229–239 (2015).
[Crossref] [PubMed]

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[Crossref] [PubMed]

Charrière, F.

Chengala, A.

A. Chengala, M. Hondzo, and J. Sheng, “Microalga propels along vorticity direction in a shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052704 (2013).
[Crossref] [PubMed]

Chmelik, R.

H. Janeckova, P. Vesely, and R. Chmelik, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res. 29(6), 2339–2345 (2009).
[PubMed]

Colomb, T.

Cuche, E.

Deming, J. W.

K. Junge, H. Eicken, and J. W. Deming, “Motility of colwellia psychrerythraea strain 34H at subzero temperatures,” Appl. Environ. Microbiol. 69(7), 4282–4284 (2003).
[Crossref] [PubMed]

Depeursinge, C.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[Crossref] [PubMed]

Domschke, W.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[Crossref] [PubMed]

Dumas, E. M.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jerico, and J. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58(4), 701–705 (2010).
[Crossref]

Ederth, T.

S. M. Vater, J. Finlay, M. E. Callow, J. A. Callow, T. Ederth, B. Liedberg, M. Grunze, and A. Rosenhahn, “Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces,” Biofouling 31(2), 229–239 (2015).
[Crossref] [PubMed]

Eicken, H.

K. Junge, H. Eicken, and J. W. Deming, “Motility of colwellia psychrerythraea strain 34H at subzero temperatures,” Appl. Environ. Microbiol. 69(7), 4282–4284 (2003).
[Crossref] [PubMed]

Emery, Y.

Falck Miniotis, M.

M. Falck Miniotis, A. Mukwaya, and A. Gjörloff Wingren, “Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells,” PLoS ONE 9(9), e106546 (2014).
[Crossref] [PubMed]

Fenchel, T.

T. Fenchel, “Microbial behavior in a heterogeneous world,” Science 296(5570), 1068–1071 (2002).
[Crossref] [PubMed]

T. Fenchel, “Eppur si muove: many water column bacteria are motile,” Aquat. Microb. Ecol. 24(2), 197–201 (2001).
[Crossref]

Finlay, J.

S. M. Vater, J. Finlay, M. E. Callow, J. A. Callow, T. Ederth, B. Liedberg, M. Grunze, and A. Rosenhahn, “Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces,” Biofouling 31(2), 229–239 (2015).
[Crossref] [PubMed]

Gjörloff Wingren, A.

M. Falck Miniotis, A. Mukwaya, and A. Gjörloff Wingren, “Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells,” PLoS ONE 9(9), e106546 (2014).
[Crossref] [PubMed]

Graff, E.

J. Kühn, B. Niraula, K. Liewer, J. Kent Wallace, E. Serabyn, E. Graff, C. Lindensmith, and J. L. Nadeau, “A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms,” Rev. Sci. Instrum. 85(12), 123113 (2014).
[Crossref] [PubMed]

Grunze, M.

S. M. Vater, J. Finlay, M. E. Callow, J. A. Callow, T. Ederth, B. Liedberg, M. Grunze, and A. Rosenhahn, “Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces,” Biofouling 31(2), 229–239 (2015).
[Crossref] [PubMed]

Hondzo, M.

A. Chengala, M. Hondzo, and J. Sheng, “Microalga propels along vorticity direction in a shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052704 (2013).
[Crossref] [PubMed]

Janeckova, H.

H. Janeckova, P. Vesely, and R. Chmelik, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res. 29(6), 2339–2345 (2009).
[PubMed]

Jericho, M. H.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[Crossref] [PubMed]

Jericho, S. K.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jerico, and J. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58(4), 701–705 (2010).
[Crossref]

Jerico, M. H.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jerico, and J. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58(4), 701–705 (2010).
[Crossref]

Jourdain, P.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

Junge, K.

K. Junge, H. Eicken, and J. W. Deming, “Motility of colwellia psychrerythraea strain 34H at subzero temperatures,” Appl. Environ. Microbiol. 69(7), 4282–4284 (2003).
[Crossref] [PubMed]

Juptner, W.

U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

Jüptner, W.

Katz, J.

J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. U.S.A. 107(5), 2082–2087 (2010).
[Crossref] [PubMed]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

Kemper, B.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[Crossref] [PubMed]

Kent Wallace, J.

J. Kühn, B. Niraula, K. Liewer, J. Kent Wallace, E. Serabyn, E. Graff, C. Lindensmith, and J. L. Nadeau, “A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms,” Rev. Sci. Instrum. 85(12), 123113 (2014).
[Crossref] [PubMed]

Kim, M.

Klages, P.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jerico, and J. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58(4), 701–705 (2010).
[Crossref]

Knox, C.

C. Knox, “Holographic microscopy as a technique for recording dynamic microscopic subjects,” Science 153(3739), 989–990 (1966).
[Crossref] [PubMed]

Kogure, K.

J. G. Mitchell and K. Kogure, “Bacterial motility: links to the environment and a driving force for microbial physics,” FEMS Microbiol. Ecol. 55(1), 3–16 (2006).
[Crossref] [PubMed]

Kreuzer, H. J.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[Crossref] [PubMed]

Kreuzer, J. J.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jerico, and J. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58(4), 701–705 (2010).
[Crossref]

Kühn, J.

J. Kühn, B. Niraula, K. Liewer, J. Kent Wallace, E. Serabyn, E. Graff, C. Lindensmith, and J. L. Nadeau, “A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms,” Rev. Sci. Instrum. 85(12), 123113 (2014).
[Crossref] [PubMed]

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[Crossref] [PubMed]

Liedberg, B.

S. M. Vater, J. Finlay, M. E. Callow, J. A. Callow, T. Ederth, B. Liedberg, M. Grunze, and A. Rosenhahn, “Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces,” Biofouling 31(2), 229–239 (2015).
[Crossref] [PubMed]

Liewer, K.

J. Kühn, B. Niraula, K. Liewer, J. Kent Wallace, E. Serabyn, E. Graff, C. Lindensmith, and J. L. Nadeau, “A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms,” Rev. Sci. Instrum. 85(12), 123113 (2014).
[Crossref] [PubMed]

Lindensmith, C.

J. Kühn, B. Niraula, K. Liewer, J. Kent Wallace, E. Serabyn, E. Graff, C. Lindensmith, and J. L. Nadeau, “A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms,” Rev. Sci. Instrum. 85(12), 123113 (2014).
[Crossref] [PubMed]

Lo, C. M.

Magistretti, P. J.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

Malkiel, E.

J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. U.S.A. 107(5), 2082–2087 (2010).
[Crossref] [PubMed]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

Mann, C.

Marquet, P.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[Crossref] [PubMed]

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[Crossref] [PubMed]

Mitchell, J. G.

J. G. Mitchell and K. Kogure, “Bacterial motility: links to the environment and a driving force for microbial physics,” FEMS Microbiol. Ecol. 55(1), 3–16 (2006).
[Crossref] [PubMed]

Molaei, M.

Montfort, F.

Moratal, C.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

Mukwaya, A.

M. Falck Miniotis, A. Mukwaya, and A. Gjörloff Wingren, “Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells,” PLoS ONE 9(9), e106546 (2014).
[Crossref] [PubMed]

Nadeau, J.

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jerico, and J. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58(4), 701–705 (2010).
[Crossref]

Nadeau, J. L.

J. Kühn, B. Niraula, K. Liewer, J. Kent Wallace, E. Serabyn, E. Graff, C. Lindensmith, and J. L. Nadeau, “A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms,” Rev. Sci. Instrum. 85(12), 123113 (2014).
[Crossref] [PubMed]

Niraula, B.

J. Kühn, B. Niraula, K. Liewer, J. Kent Wallace, E. Serabyn, E. Graff, C. Lindensmith, and J. L. Nadeau, “A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms,” Rev. Sci. Instrum. 85(12), 123113 (2014).
[Crossref] [PubMed]

Osten, W.

Ozcan, A.

T.-W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. U.S.A. 109(40), 16018–16022 (2012).
[Crossref] [PubMed]

Pavillon, N.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

Pedrini, G.

Place, A. R.

J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. U.S.A. 107(5), 2082–2087 (2010).
[Crossref] [PubMed]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Life at low Reynolds number,” Am. J. Phys. 45(1), 3–11 (1977).
[Crossref]

Rappaz, B.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

Rivera, M. J.

M. J. Rivera and D. Y. Sumner, “Unraveling the three-dimensional morphology of archean microbialites,” J. Paleontol. 88(4), 719–726 (2014).
[Crossref]

Rosenhahn, A.

S. M. Vater, J. Finlay, M. E. Callow, J. A. Callow, T. Ederth, B. Liedberg, M. Grunze, and A. Rosenhahn, “Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces,” Biofouling 31(2), 229–239 (2015).
[Crossref] [PubMed]

Schäfer, M.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[Crossref] [PubMed]

Schnars, U.

U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

U. Schnars and W. Jüptner, “Direct Recording of Holograms by a CCD Target and Numerical Reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[Crossref] [PubMed]

Schnekenburger, J.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[Crossref] [PubMed]

Serabyn, E.

J. Kühn, B. Niraula, K. Liewer, J. Kent Wallace, E. Serabyn, E. Graff, C. Lindensmith, and J. L. Nadeau, “A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms,” Rev. Sci. Instrum. 85(12), 123113 (2014).
[Crossref] [PubMed]

Sheng, J.

M. Molaei and J. Sheng, “Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm,” Opt. Express 22(26), 32119–32137 (2014).
[Crossref] [PubMed]

A. Chengala, M. Hondzo, and J. Sheng, “Microalga propels along vorticity direction in a shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052704 (2013).
[Crossref] [PubMed]

J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. U.S.A. 107(5), 2082–2087 (2010).
[Crossref] [PubMed]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

Su, T.-W.

T.-W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. U.S.A. 109(40), 16018–16022 (2012).
[Crossref] [PubMed]

Sumner, D. Y.

M. J. Rivera and D. Y. Sumner, “Unraveling the three-dimensional morphology of archean microbialites,” J. Paleontol. 88(4), 719–726 (2014).
[Crossref]

Vater, S. M.

S. M. Vater, J. Finlay, M. E. Callow, J. A. Callow, T. Ederth, B. Liedberg, M. Grunze, and A. Rosenhahn, “Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces,” Biofouling 31(2), 229–239 (2015).
[Crossref] [PubMed]

Vesely, P.

H. Janeckova, P. Vesely, and R. Chmelik, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res. 29(6), 2339–2345 (2009).
[PubMed]

von Bally, G.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[Crossref] [PubMed]

Xu, W.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[Crossref] [PubMed]

Xue, L.

T.-W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. U.S.A. 109(40), 16018–16022 (2012).
[Crossref] [PubMed]

Yamaguchi, I.

Yu, L.

Zhang, F.

Zhang, T.

Am. J. Phys. (1)

E. M. Purcell, “Life at low Reynolds number,” Am. J. Phys. 45(1), 3–11 (1977).
[Crossref]

Anticancer Res. (1)

H. Janeckova, P. Vesely, and R. Chmelik, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res. 29(6), 2339–2345 (2009).
[PubMed]

Appl. Environ. Microbiol. (1)

K. Junge, H. Eicken, and J. W. Deming, “Motility of colwellia psychrerythraea strain 34H at subzero temperatures,” Appl. Environ. Microbiol. 69(7), 4282–4284 (2003).
[Crossref] [PubMed]

Appl. Opt. (4)

Aquat. Microb. Ecol. (1)

T. Fenchel, “Eppur si muove: many water column bacteria are motile,” Aquat. Microb. Ecol. 24(2), 197–201 (2001).
[Crossref]

Biofouling (1)

S. M. Vater, J. Finlay, M. E. Callow, J. A. Callow, T. Ederth, B. Liedberg, M. Grunze, and A. Rosenhahn, “Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces,” Biofouling 31(2), 229–239 (2015).
[Crossref] [PubMed]

FEMS Microbiol. Ecol. (1)

J. G. Mitchell and K. Kogure, “Bacterial motility: links to the environment and a driving force for microbial physics,” FEMS Microbiol. Ecol. 55(1), 3–16 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[Crossref] [PubMed]

J. Neurosci. (1)

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

J. Paleontol. (1)

M. J. Rivera and D. Y. Sumner, “Unraveling the three-dimensional morphology of archean microbialites,” J. Paleontol. 88(4), 719–726 (2014).
[Crossref]

Meas. Sci. Technol. (1)

U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Chengala, M. Hondzo, and J. Sheng, “Microalga propels along vorticity direction in a shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052704 (2013).
[Crossref] [PubMed]

Planet. Space Sci. (1)

S. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jerico, and J. J. Kreuzer, “In-line digital holographic microscopy for terrestrial and exobiological research,” Planet. Space Sci. 58(4), 701–705 (2010).
[Crossref]

PLoS ONE (2)

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE 7(1), e30912 (2012).
[Crossref] [PubMed]

M. Falck Miniotis, A. Mukwaya, and A. Gjörloff Wingren, “Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells,” PLoS ONE 9(9), e106546 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

T.-W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. U.S.A. 109(40), 16018–16022 (2012).
[Crossref] [PubMed]

J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, “A dinoflagellate exploits toxins to immobilize prey prior to ingestion,” Proc. Natl. Acad. Sci. U.S.A. 107(5), 2082–2087 (2010).
[Crossref] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

J. Kühn, B. Niraula, K. Liewer, J. Kent Wallace, E. Serabyn, E. Graff, C. Lindensmith, and J. L. Nadeau, “A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms,” Rev. Sci. Instrum. 85(12), 123113 (2014).
[Crossref] [PubMed]

Science (2)

C. Knox, “Holographic microscopy as a technique for recording dynamic microscopic subjects,” Science 153(3739), 989–990 (1966).
[Crossref] [PubMed]

T. Fenchel, “Microbial behavior in a heterogeneous world,” Science 296(5570), 1068–1071 (2002).
[Crossref] [PubMed]

Other (1)

Y. Gong and I. F. Sbalzarini, “Image enhancement by gradient distribution specification,” Proc. ACCV, 12th Asian Conference on Computer Vision Workshop on Emerging Topics in Image Enhancement and Restoration, w7–p3 (2015).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1: AVI (11649 KB)     
» Visualization 2: AVI (12674 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic and images of the compact, twin-beam digital holographic microscope in its laboratory implementation. (a) Schematic showing four main elements (discussed in the text): the source, the sample (specimen path is labeled Spec. and reference path is labeled Ref.), the microscope, and the sensor. (b) Solid model of the hardware. The fiber-fed source assembly is at the bottom, and the imaging camera is at the top. The microscope optics – comprised of the two aspheric lenses and the relay lens – are contained within the 300 mm long lens tube. The three- axis stage between the source the microscope optics provides easy manual manipulation of the specimen under study. (c) Photograph of the instrument in the laboratory. A shutter over the collimating lens protects against condensation, and is operated remotely by a controller (see Section 5 for a discussion)
Fig. 2
Fig. 2 Resolution performance of the compact, twin-beam system. A standard USAF resolution target reconstruction in amplitude (a1) and phase (a2). This image shows group 9, and all three elements resolved. Group 9, element 3 has a line width of 0.78 μm. (b) Phase reconstruction of an image of live, motile bacterial cells. A phase shift from dark to light occurs as the organisms swim out of the focal plane (arrow). (c) Intensity reconstruction of the same bacterial cell image.
Fig. 3
Fig. 3 Motility of a psychrophilic bacterial species, Colwellia psychrerythraea, captured at a range of temperatures with the compact, twin-beam system. (a) Hologram. (b) Reconstructed phase image at + 6 °C (Visualization 1). (c) Reconstructed intensity image at −15 °C (Visualization 2). (d) Tracks of individual cells at + 6 °C. (e) Tracks at –13 °C. (f) Tracks at –15 °C. The slight motion of cells to the right is drift and does not represent bacterial motility. The diffraction rings seen in the images are out-of-focus cells on a different plane.

Tables (1)

Tables Icon

Table 1 Fundamental Properties of the compact, twin-beam DHM system

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ fr = s fr
s fr >2 2 p
θ fr < λ 2 2 p

Metrics