Abstract

A deformable mirror with actuators of thermoelectric coolers (TECs) is introduced in this paper. Due to the bidirectional thermal actuation property of the TEC, both upward and downward surface control is available for the DM. The response functions of the actuators are investigated. A close-loop wavefront control experiment is performed too, where the defocus and the astigmatism were corrected. The results reveal that there is a promising prospect for the novel design to be used in corrections of static aberrations, such as in the Inertial Confinement Fusion (ICF).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deformable mirror with thermal actuators

Gleb Vdovin and Mikhail Loktev
Opt. Lett. 27(9) 677-679 (2002)

Simulational and experimental investigation on the dynamic high frequency aberration of the deformable mirror

Licheng Sun, Lei Huang, Meng Yan, Junbiao Fan, Yamin Zheng, and Chuang Sun
Opt. Express 25(26) 32853-32866 (2017)

Development of a unimorph deformable mirror with water cooling

Zhengxiong Zhu, Yan Li, Junjie Chen, Jianqiang Ma, and Jiaru Chu
Opt. Express 25(24) 29916-29926 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Sato, H. Ishida, and O. Ikeda, “Adaptive PVDF piezoelectric deformable mirror system,” Appl. Opt. 19(9), 1430–1434 (1980).
    [Crossref] [PubMed]
  2. P. Yang, Y. Ning, X. Lei, B. Xu, X. Li, L. Dong, H. Yan, W. Liu, W. Jiang, L. Liu, C. Wang, X. Liang, and X. Tang, “Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror,” Opt. Express 18(7), 7121–7130 (2010).
    [Crossref] [PubMed]
  3. Y. Wu and Q. Zou, “Iterative control approach to compensate for both the hysteresis and the dynamics effects of piezo actuators,” IEEE Trans. Contr. Syst. Technol. 15(5), 936–944 (2007).
    [Crossref]
  4. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16(15), 10943–10955 (2008).
    [Crossref] [PubMed]
  5. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14(20), 8900–8917 (2006).
    [Crossref] [PubMed]
  6. K. Morzinski, B. Macintosh, D. Gavel, and D. Dillon, “Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics,” Opt. Express 17(7), 5829–5844 (2009).
    [Crossref] [PubMed]
  7. T. Bifano, “Adaptive imaging: MEMS deformable mirrors,” Nat. Photonics 5(1), 21–23 (2011).
    [Crossref]
  8. G. Vdovin and M. Loktev, “Deformable mirror with thermal actuators,” Opt. Lett. 27(9), 677–679 (2002).
    [Crossref] [PubMed]
  9. X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
    [Crossref] [PubMed]
  10. M. A. Arain, V. Quetschke, J. Gleason, L. F. Williams, M. Rakhmanov, J. Lee, R. J. Cruz, G. Mueller, D. B. Tanner, and D. H. Reitze, “Adaptive beam shaping by controlled thermal lensing in optical elements,” Appl. Opt. 46(12), 2153–2165 (2007).
    [Crossref] [PubMed]
  11. M. A. Arain, W. Z. Korth, L. F. Williams, R. M. Martin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Adaptive control of modal properties of optical beams using photothermal effects,” Opt. Express 18(3), 2767–2781 (2010).
    [Crossref] [PubMed]
  12. M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52(12), 2909–2916 (2013).
    [Crossref] [PubMed]
  13. C. Reinlein, M. Appelfelder, M. Goy, K. Ludewigt, and A. Tünnermann, “Performance of a thermal-piezoelectric deformable mirror under 6.2 kW continuous-wave operation,” Appl. Opt. 52(34), 8363–8368 (2013).
    [Crossref] [PubMed]
  14. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
    [Crossref] [PubMed]
  15. D. Wanjun, H. Dongxia, Z. Wei, Z. Junpu, J. Feng, Y. Zeping, Z. Kun, J. Xuejun, D. Wu, Z. Runchang, P. Zhitao, and F. Bin, “Beam wavefront control of a thermal inertia laser for inertial confinement fusion application,” Appl. Opt. 48(19), 3691–3694 (2009).
    [Crossref] [PubMed]
  16. L. Huang, Q. Xue, P. Yan, M. L. Gong, T. H. Li, Z. X. Feng, and X. K. Ma, “A thermo-field bimetal deformable mirror for wavefront correction in high power lasers,” Laser Phys. Lett. 11(1), 015001 (2014).
    [Crossref]
  17. Q. Xue, L. Huang, D. Hu, P. Yan, and M. Gong, “Research on controlling thermal deformable mirror’s influence functions via manipulating thermal fields,” Appl. Opt. 53(2), 237–243 (2014).
    [PubMed]
  18. L. Huang, X. Ma, Q. Bian, T. Li, C. Zhou, and M. Gong, “High-precision system identification method for a deformable mirror in wavefront control,” Appl. Opt. 54(14), 4313–4317 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

2013 (2)

2011 (1)

T. Bifano, “Adaptive imaging: MEMS deformable mirrors,” Nat. Photonics 5(1), 21–23 (2011).
[Crossref]

2010 (2)

2009 (2)

2008 (1)

2007 (3)

2006 (1)

2002 (1)

1980 (1)

Amberg, P.

Appelfelder, M.

Arain, M. A.

Auerbach, J. M.

Bian, Q.

Bifano, T.

T. Bifano, “Adaptive imaging: MEMS deformable mirrors,” Nat. Photonics 5(1), 21–23 (2011).
[Crossref]

Bin, F.

Bowers, M. W.

Burns, D.

Canuel, B.

Cavalier, F.

Chang, E.

Cruz, R. J.

Cunningham, J. E.

Day, R.

Dillon, D.

Dixit, S. N.

Djordjevic, S. S.

Dong, L.

Dongxia, H.

Drexler, W.

Erbert, G. V.

Feng, J.

Feng, Z. X.

L. Huang, Q. Xue, P. Yan, M. L. Gong, T. H. Li, Z. X. Feng, and X. K. Ma, “A thermo-field bimetal deformable mirror for wavefront correction in high power lasers,” Laser Phys. Lett. 11(1), 015001 (2014).
[Crossref]

Fernandez, E. J.

Gavel, D.

Genin, E.

Gleason, J.

Gong, M.

Gong, M. L.

L. Huang, Q. Xue, P. Yan, M. L. Gong, T. H. Li, Z. X. Feng, and X. K. Ma, “A thermo-field bimetal deformable mirror for wavefront correction in high power lasers,” Laser Phys. Lett. 11(1), 015001 (2014).
[Crossref]

Goy, M.

Haynam, C. A.

Heestand, G. M.

Henesian, M. A.

Hermann, B.

Hermann, M. R.

Ho, R.

Hu, D.

Huang, L.

Ikeda, O.

Ishida, H.

Jancaitis, K. S.

Jiang, W.

Junpu, Z.

Kasprzack, M.

Korth, W. Z.

Krishnamoorthy, A. V.

Kun, Z.

Lee, J.

Lee, J.-H.

Lei, X.

Lexau, J.

Li, T.

Li, T. H.

L. Huang, Q. Xue, P. Yan, M. L. Gong, T. H. Li, Z. X. Feng, and X. K. Ma, “A thermo-field bimetal deformable mirror for wavefront correction in high power lasers,” Laser Phys. Lett. 11(1), 015001 (2014).
[Crossref]

Li, X.

Liang, X.

Lin, S.

Liu, F.

Liu, L.

Liu, W.

Loktev, M.

Lubeigt, W.

Ludewigt, K.

Luo, Y.

Ma, X.

Ma, X. K.

L. Huang, Q. Xue, P. Yan, M. L. Gong, T. H. Li, Z. X. Feng, and X. K. Ma, “A thermo-field bimetal deformable mirror for wavefront correction in high power lasers,” Laser Phys. Lett. 11(1), 015001 (2014).
[Crossref]

Macintosh, B.

Manes, K. R.

Marque, J.

Marshall, C. D.

Martin, R. M.

Mehta, N. C.

Menapace, J.

Morzinski, K.

Moses, E.

Mueller, G.

Murray, J. R.

Ning, Y.

Nostrand, M. C.

Orth, C. D.

Patterson, R.

Povazay, B.

Quetschke, V.

Raj, K.

Rakhmanov, M.

Reinlein, C.

Reitze, D. H.

Runchang, Z.

Sacks, R. A.

Sato, T.

Sentenac, D.

Shaw, M. J.

Shubin, I.

Spaeth, M.

Sutton, S. B.

Tang, X.

Tanner, D. B.

Thacker, H.

Tünnermann, A.

Unterhuber, A.

Vabre, L.

Vajente, G.

Valentine, G.

Van Wonterghem, B. M.

Vdovin, G.

Wang, C.

Wanjun, D.

Wegner, P. J.

Wei, Z.

White, R. K.

Widmayer, C. C.

Williams, L. F.

Williams, W. H.

Wu, D.

Wu, Y.

Y. Wu and Q. Zou, “Iterative control approach to compensate for both the hysteresis and the dynamics effects of piezo actuators,” IEEE Trans. Contr. Syst. Technol. 15(5), 936–944 (2007).
[Crossref]

Xu, B.

Xue, Q.

Q. Xue, L. Huang, D. Hu, P. Yan, and M. Gong, “Research on controlling thermal deformable mirror’s influence functions via manipulating thermal fields,” Appl. Opt. 53(2), 237–243 (2014).
[PubMed]

L. Huang, Q. Xue, P. Yan, M. L. Gong, T. H. Li, Z. X. Feng, and X. K. Ma, “A thermo-field bimetal deformable mirror for wavefront correction in high power lasers,” Laser Phys. Lett. 11(1), 015001 (2014).
[Crossref]

Xuejun, J.

Yan, H.

Yan, P.

Q. Xue, L. Huang, D. Hu, P. Yan, and M. Gong, “Research on controlling thermal deformable mirror’s influence functions via manipulating thermal fields,” Appl. Opt. 53(2), 237–243 (2014).
[PubMed]

L. Huang, Q. Xue, P. Yan, M. L. Gong, T. H. Li, Z. X. Feng, and X. K. Ma, “A thermo-field bimetal deformable mirror for wavefront correction in high power lasers,” Laser Phys. Lett. 11(1), 015001 (2014).
[Crossref]

Yang, P.

Yang, S. T.

Yao, J.

Zeping, Y.

Zheng, X.

Zhitao, P.

Zhou, C.

Zou, Q.

Y. Wu and Q. Zou, “Iterative control approach to compensate for both the hysteresis and the dynamics effects of piezo actuators,” IEEE Trans. Contr. Syst. Technol. 15(5), 936–944 (2007).
[Crossref]

Appl. Opt. (8)

T. Sato, H. Ishida, and O. Ikeda, “Adaptive PVDF piezoelectric deformable mirror system,” Appl. Opt. 19(9), 1430–1434 (1980).
[Crossref] [PubMed]

M. A. Arain, V. Quetschke, J. Gleason, L. F. Williams, M. Rakhmanov, J. Lee, R. J. Cruz, G. Mueller, D. B. Tanner, and D. H. Reitze, “Adaptive beam shaping by controlled thermal lensing in optical elements,” Appl. Opt. 46(12), 2153–2165 (2007).
[Crossref] [PubMed]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

D. Wanjun, H. Dongxia, Z. Wei, Z. Junpu, J. Feng, Y. Zeping, Z. Kun, J. Xuejun, D. Wu, Z. Runchang, P. Zhitao, and F. Bin, “Beam wavefront control of a thermal inertia laser for inertial confinement fusion application,” Appl. Opt. 48(19), 3691–3694 (2009).
[Crossref] [PubMed]

M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52(12), 2909–2916 (2013).
[Crossref] [PubMed]

C. Reinlein, M. Appelfelder, M. Goy, K. Ludewigt, and A. Tünnermann, “Performance of a thermal-piezoelectric deformable mirror under 6.2 kW continuous-wave operation,” Appl. Opt. 52(34), 8363–8368 (2013).
[Crossref] [PubMed]

Q. Xue, L. Huang, D. Hu, P. Yan, and M. Gong, “Research on controlling thermal deformable mirror’s influence functions via manipulating thermal fields,” Appl. Opt. 53(2), 237–243 (2014).
[PubMed]

L. Huang, X. Ma, Q. Bian, T. Li, C. Zhou, and M. Gong, “High-precision system identification method for a deformable mirror in wavefront control,” Appl. Opt. 54(14), 4313–4317 (2015).
[Crossref] [PubMed]

IEEE Trans. Contr. Syst. Technol. (1)

Y. Wu and Q. Zou, “Iterative control approach to compensate for both the hysteresis and the dynamics effects of piezo actuators,” IEEE Trans. Contr. Syst. Technol. 15(5), 936–944 (2007).
[Crossref]

Laser Phys. Lett. (1)

L. Huang, Q. Xue, P. Yan, M. L. Gong, T. H. Li, Z. X. Feng, and X. K. Ma, “A thermo-field bimetal deformable mirror for wavefront correction in high power lasers,” Laser Phys. Lett. 11(1), 015001 (2014).
[Crossref]

Nat. Photonics (1)

T. Bifano, “Adaptive imaging: MEMS deformable mirrors,” Nat. Photonics 5(1), 21–23 (2011).
[Crossref]

Opt. Express (6)

W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16(15), 10943–10955 (2008).
[Crossref] [PubMed]

K. Morzinski, B. Macintosh, D. Gavel, and D. Dillon, “Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics,” Opt. Express 17(7), 5829–5844 (2009).
[Crossref] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14(20), 8900–8917 (2006).
[Crossref] [PubMed]

M. A. Arain, W. Z. Korth, L. F. Williams, R. M. Martin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Adaptive control of modal properties of optical beams using photothermal effects,” Opt. Express 18(3), 2767–2781 (2010).
[Crossref] [PubMed]

P. Yang, Y. Ning, X. Lei, B. Xu, X. Li, L. Dong, H. Yan, W. Liu, W. Jiang, L. Liu, C. Wang, X. Liang, and X. Tang, “Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror,” Opt. Express 18(7), 7121–7130 (2010).
[Crossref] [PubMed]

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The fabrication procedure of the thermal DM
Fig. 2
Fig. 2 The photo and the actuators numbering of the prototype DM
Fig. 3
Fig. 3 Configuration of the wavefront correction system
Fig. 4
Fig. 4 (a) the initial surface shape (b) the flattened surface shape
Fig. 5
Fig. 5 The curve of stroke over time of actuator 8
Fig. 6
Fig. 6 Response functions of the 9 actuators on up-left quarter of the mirror
Fig. 7
Fig. 7 Comparison of the upward response function and downward response function of actuator 13 (a) upward response function (b) downward response function
Fig. 8
Fig. 8 Stroke curves of the actuators over the temperature of copper pillar
Fig. 9
Fig. 9 Target aberration and the corresponding interference pattern of the DM

Tables (1)

Tables Icon

Table 1 Parameters of the mirror and the copper pillar

Metrics