Abstract

Embedded microball lenses with superior optical properties function as convex microball lens (VMBL) and concave microball lens (CMBL) were fabricated inside a PMMA substrate with a high repetition rate femtosecond fiber laser. The VMBL was created by femtosecond laser-induced refractive index change, while the CMBL was fabricated due to the heat accumulation effect of the successive laser pulses irradiation at a high repetition rate. The processing window for both types of the lenses was studied and optimized, and the optical properties were also tested by imaging a remote object with an inverted microscope. In order to obtain the microball lenses with adjustable focal lengths and suppressed optical aberration, a shape control method was thus proposed and examined with experiments and ZEMAX® simulations. Applying the optimized fabrication conditions, two types of the embedded microball lenses arrays were fabricated and then tested with imaging experiments. This technology allows the direct fabrication of microlens inside transparent bulk polymer material which has great application potential in multi-function integrated microfluidic devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Arbitrary shaped microlens array laser sintered on glass sheets

Changyi Lai and Vitor M. Schneider
Appl. Opt. 48(35) 6621-6626 (2009)

Fabrication of large curvature microlens array using confined laser swelling method

Jinyou Shao, Yucheng Ding, Haipeng Zhai, Bing Hu, Xiangming Li, and Hongmiao Tian
Opt. Lett. 38(16) 3044-3046 (2013)

Rapid localized heating of graphene coating on a silicon mold by induction for precision molding of polymer optics

Lin Zhang, Wenchen Zhou, and Allen Y. Yi
Opt. Lett. 42(7) 1369-1372 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
    [Crossref]
  2. C. P. B. Siu, H. Zeng, and M. Chiao, “Magnetically actuated MEMS microlens scanner for in vivo medical imaging,” Opt. Express 15(18), 11154–11166 (2007).
    [Crossref] [PubMed]
  3. J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
    [Crossref] [PubMed]
  4. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
    [Crossref] [PubMed]
  5. J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, “Performance of an integrated microoptical system for fluorescence detection in microfluidic systems,” Anal. Chem. 74(14), 3400–3407 (2002).
    [Crossref] [PubMed]
  6. Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89(14), 141108 (2006).
    [Crossref]
  7. J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
    [Crossref]
  8. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
    [Crossref]
  9. E. H. Park, M. J. Kim, and Y. S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photon. Technol. Lett. 11(4), 439–441 (1999).
    [Crossref]
  10. J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt. Express 15(17), 10483–10491 (2007).
    [Crossref] [PubMed]
  11. R. Winston, P. Schreiber, S. Kudaev, P. Dannberg, U. D. Zeitner, and R. J. Koshel, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).
  12. G. Schlingloff, H. J. Kiel, and A. Schober, “Microlenses as amplification for CCD-based detection devices for screening applications in biology, biochemistry, and chemistry,” Appl. Opt. 37(10), 1930–1934 (1998).
    [Crossref] [PubMed]
  13. N. Ma, P. C. Ashok, D. J. Stevenson, F. J. Gunn-Moore, and K. Dholakia, “Integrated optical transfection system using a microlens fiber combined with microfluidic gene delivery,” Biomed. Opt. Express 1(2), 694–705 (2010).
    [Crossref] [PubMed]
  14. P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
    [Crossref]
  15. Q. Dai, R. Rajasekharan, H. Butt, X. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall microlens array based on vertically aligned carbon nanofibers,” Small 8(16), 2501–2504 (2012).
    [Crossref] [PubMed]
  16. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [Crossref] [PubMed]
  17. Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
    [Crossref] [PubMed]
  18. Y. J. Fan, Y. C. Wu, Y. Chen, Y. C. Kung, T. H. Wu, K. W. Huang, H. J. Sheen, and P. Y. Chiou, “Three dimensional microfluidics with embedded microball lenses for parallel and high throughput multicolor fluorescence detection,” Biomicrofluidics 7(4), 044121 (2013).
    [Crossref] [PubMed]
  19. M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
    [Crossref] [PubMed]
  20. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28(13), 1144–1146 (2003).
    [Crossref] [PubMed]
  21. Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process. 85(1), 11–14 (2006).
    [Crossref]
  22. A. A. Bettiol, C. N. B. Udalagama, E. J. Teo, J. A. van Kan, and F. Watt, “Embedded photonic structures fabricated in photosensitive glass using proton beam writing,” Nucl. Instrum. Methods Phys. Res. Sect. B 260, 357–361 (2007).
  23. J. M. Fernández-Pradas, D. Serrano, P. Serra, and J. L. Morenza, “Laser fabricated microchannels inside photostructurable glass-ceramic,” Appl. Surf. Sci. 255(10), 5499–5502 (2009).
    [Crossref]
  24. Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 10A), L1146–L1148 (1999).
    [Crossref]
  25. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
    [Crossref]
  26. K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17(10), 8685–8695 (2009).
    [Crossref] [PubMed]
  27. Y. Li and S. Qu, “Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips,” Curr. Appl. Phys. 13(7), 1292–1295 (2013).
    [Crossref]
  28. S. Juodkazis, S. Matsuo, H. Misawa, and K. Yamasaki, “Three-dimensional micro-channels in polymers: one-step fabrication,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 371–373 (2003).
    [Crossref]
  29. D. F. Farson, H. W. Choi, C. M. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluid channels in poly(methylmethacrylate),” J. Laser Appl. 18(3), 210–215 (2006).
    [Crossref]
  30. Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Ink-jet fabrication of polymer microlens for optical-I/O chip packaging,” Jpn. J. Appl. Phys. 39(1), 1490–1493 (2000).
    [Crossref]
  31. M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28(9), 731–733 (2003).
    [Crossref] [PubMed]
  32. A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
    [Crossref]
  33. N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
    [Crossref]
  34. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988).
    [Crossref] [PubMed]
  35. M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
    [Crossref]
  36. D. Wu, J.-N. Wang, L.-G. Niu, X. L. Zhang, S. Z. Wu, Q.-D. Chen, L. P. Lee, and H. B. Sun, “Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging,” Adv. Opt. Mater. 2(8), 751–758 (2014).
    [Crossref]
  37. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
    [Crossref] [PubMed]
  38. Y. Hu, Q. Yang, F. Chen, H. Bian, Z. Deng, G. Du, J. Si, F. Yun, and X. Hou, “Cost-efficient and flexible fabrication of rectangular-shaped microlens arrays with controllable aspect ratio and spherical morphology,” Appl. Surf. Sci. 292, 285–290 (2014).
    [Crossref]
  39. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
    [Crossref]
  40. D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
    [Crossref]
  41. C. Zheng, A. Hu, K. D. Kihm, Q. Ma, R. Li, T. Chen, and W. W. Duley, “Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging,” Small (2015), http://www.ncbi.nlm.nih.gov/pubmed/25740653 .
    [PubMed]
  42. R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
    [Crossref]
  43. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref] [PubMed]
  44. Y. Bellouard and M. O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19(7), 6807–6821 (2011).
    [Crossref] [PubMed]
  45. A. Baum, P. J. Scully, W. Perrie, D. Liu, and V. Lucarini, “Mechanisms of femtosecond laser-induced refractive index modification of poly (methyl methacrylate),” J. Opt. Soc. Am. B 27(1), 107–111 (2010).
    [Crossref]
  46. M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget, and J. Mieloszynski, “Thermal degradation of poly (methyl methacrylate)(PMMA): modelling of DTG and TG curves,” Polym. Degrad. Stabil. 79(2), 271–281 (2003).
    [Crossref]
  47. A. Hu, M. Rybachuk, Q. B. Lu, and W. W. Duley, “Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation,” Appl. Phys. Lett. 91(13), 131906 (2007).
    [Crossref]
  48. H. Zappe, Fundamentals of Micro-Optics (Cambridge University, 2010).

2015 (1)

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

2014 (3)

D. Wu, J.-N. Wang, L.-G. Niu, X. L. Zhang, S. Z. Wu, Q.-D. Chen, L. P. Lee, and H. B. Sun, “Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging,” Adv. Opt. Mater. 2(8), 751–758 (2014).
[Crossref]

Y. Hu, Q. Yang, F. Chen, H. Bian, Z. Deng, G. Du, J. Si, F. Yun, and X. Hou, “Cost-efficient and flexible fabrication of rectangular-shaped microlens arrays with controllable aspect ratio and spherical morphology,” Appl. Surf. Sci. 292, 285–290 (2014).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

2013 (4)

Y. J. Fan, Y. C. Wu, Y. Chen, Y. C. Kung, T. H. Wu, K. W. Huang, H. J. Sheen, and P. Y. Chiou, “Three dimensional microfluidics with embedded microball lenses for parallel and high throughput multicolor fluorescence detection,” Biomicrofluidics 7(4), 044121 (2013).
[Crossref] [PubMed]

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Y. Li and S. Qu, “Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips,” Curr. Appl. Phys. 13(7), 1292–1295 (2013).
[Crossref]

R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
[Crossref]

2012 (1)

Q. Dai, R. Rajasekharan, H. Butt, X. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall microlens array based on vertically aligned carbon nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref] [PubMed]

2011 (2)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Y. Bellouard and M. O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19(7), 6807–6821 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (3)

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17(10), 8685–8695 (2009).
[Crossref] [PubMed]

J. M. Fernández-Pradas, D. Serrano, P. Serra, and J. L. Morenza, “Laser fabricated microchannels inside photostructurable glass-ceramic,” Appl. Surf. Sci. 255(10), 5499–5502 (2009).
[Crossref]

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

2007 (4)

A. Hu, M. Rybachuk, Q. B. Lu, and W. W. Duley, “Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation,” Appl. Phys. Lett. 91(13), 131906 (2007).
[Crossref]

A. A. Bettiol, C. N. B. Udalagama, E. J. Teo, J. A. van Kan, and F. Watt, “Embedded photonic structures fabricated in photosensitive glass using proton beam writing,” Nucl. Instrum. Methods Phys. Res. Sect. B 260, 357–361 (2007).

J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt. Express 15(17), 10483–10491 (2007).
[Crossref] [PubMed]

C. P. B. Siu, H. Zeng, and M. Chiao, “Magnetically actuated MEMS microlens scanner for in vivo medical imaging,” Opt. Express 15(18), 11154–11166 (2007).
[Crossref] [PubMed]

2006 (4)

J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
[Crossref] [PubMed]

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89(14), 141108 (2006).
[Crossref]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process. 85(1), 11–14 (2006).
[Crossref]

D. F. Farson, H. W. Choi, C. M. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluid channels in poly(methylmethacrylate),” J. Laser Appl. 18(3), 210–215 (2006).
[Crossref]

2005 (2)

R. Winston, P. Schreiber, S. Kudaev, P. Dannberg, U. D. Zeitner, and R. J. Koshel, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

2004 (1)

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

2003 (5)

S. Juodkazis, S. Matsuo, H. Misawa, and K. Yamasaki, “Three-dimensional micro-channels in polymers: one-step fabrication,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 371–373 (2003).
[Crossref]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28(13), 1144–1146 (2003).
[Crossref] [PubMed]

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28(9), 731–733 (2003).
[Crossref] [PubMed]

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget, and J. Mieloszynski, “Thermal degradation of poly (methyl methacrylate)(PMMA): modelling of DTG and TG curves,” Polym. Degrad. Stabil. 79(2), 271–281 (2003).
[Crossref]

2002 (2)

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, “Performance of an integrated microoptical system for fluorescence detection in microfluidic systems,” Anal. Chem. 74(14), 3400–3407 (2002).
[Crossref] [PubMed]

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
[Crossref]

2001 (1)

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

2000 (2)

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Ink-jet fabrication of polymer microlens for optical-I/O chip packaging,” Jpn. J. Appl. Phys. 39(1), 1490–1493 (2000).
[Crossref]

1999 (2)

Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 10A), L1146–L1148 (1999).
[Crossref]

E. H. Park, M. J. Kim, and Y. S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photon. Technol. Lett. 11(4), 439–441 (1999).
[Crossref]

1998 (2)

G. Schlingloff, H. J. Kiel, and A. Schober, “Microlenses as amplification for CCD-based detection devices for screening applications in biology, biochemistry, and chemistry,” Appl. Opt. 37(10), 1930–1934 (1998).
[Crossref] [PubMed]

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
[Crossref] [PubMed]

1997 (1)

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

1992 (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[Crossref]

1988 (1)

Aksyuk, V. A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Amaragtunga, G.

Q. Dai, R. Rajasekharan, H. Butt, X. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall microlens array based on vertically aligned carbon nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref] [PubMed]

Ando, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Ink-jet fabrication of polymer microlens for optical-I/O chip packaging,” Jpn. J. Appl. Phys. 39(1), 1490–1493 (2000).
[Crossref]

Arai, A.

Arai, J.

Arai, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Ink-jet fabrication of polymer microlens for optical-I/O chip packaging,” Jpn. J. Appl. Phys. 39(1), 1490–1493 (2000).
[Crossref]

Arney, S.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Ashok, P. C.

Basavanhally, N. R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Baum, A.

Belazaras, K.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Bellini, N.

Bellouard, Y.

Bettiol, A. A.

A. A. Bettiol, C. N. B. Udalagama, E. J. Teo, J. A. van Kan, and F. Watt, “Embedded photonic structures fabricated in photosensitive glass using proton beam writing,” Nucl. Instrum. Methods Phys. Res. Sect. B 260, 357–361 (2007).

Bian, H.

Y. Hu, Q. Yang, F. Chen, H. Bian, Z. Deng, G. Du, J. Si, F. Yun, and X. Hou, “Cost-efficient and flexible fabrication of rectangular-shaped microlens arrays with controllable aspect ratio and spherical morphology,” Appl. Surf. Sci. 292, 285–290 (2014).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

Bolle, C. A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Bovatsek, J.

Brahmasandra, S. N.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
[Crossref] [PubMed]

Bu, J.

Buividas, R.

Burke, D. T.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
[Crossref] [PubMed]

Burns, M. A.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
[Crossref] [PubMed]

Butt, H.

Q. Dai, R. Rajasekharan, H. Butt, X. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall microlens array based on vertically aligned carbon nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref] [PubMed]

Cerullo, G.

Chai, Y. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Chan, H. B.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Chang, J. Y.

Chen, F.

Y. Hu, Q. Yang, F. Chen, H. Bian, Z. Deng, G. Du, J. Si, F. Yun, and X. Hou, “Cost-efficient and flexible fabrication of rectangular-shaped microlens arrays with controllable aspect ratio and spherical morphology,” Appl. Surf. Sci. 292, 285–290 (2014).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

Chen, Q.-D.

D. Wu, J.-N. Wang, L.-G. Niu, X. L. Zhang, S. Z. Wu, Q.-D. Chen, L. P. Lee, and H. B. Sun, “Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging,” Adv. Opt. Mater. 2(8), 751–758 (2014).
[Crossref]

Chen, S. J.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Chen, T.

C. Zheng, A. Hu, K. D. Kihm, Q. Ma, R. Li, T. Chen, and W. W. Duley, “Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging,” Small (2015), http://www.ncbi.nlm.nih.gov/pubmed/25740653 .
[PubMed]

Chen, Y.

Y. J. Fan, Y. C. Wu, Y. Chen, Y. C. Kung, T. H. Wu, K. W. Huang, H. J. Sheen, and P. Y. Chiou, “Three dimensional microfluidics with embedded microball lenses for parallel and high throughput multicolor fluorescence detection,” Biomicrofluidics 7(4), 044121 (2013).
[Crossref] [PubMed]

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Cheng, Y.

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process. 85(1), 11–14 (2006).
[Crossref]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28(13), 1144–1146 (2003).
[Crossref] [PubMed]

Chiao, M.

Chiou, P. Y.

Y. J. Fan, Y. C. Wu, Y. Chen, Y. C. Kung, T. H. Wu, K. W. Huang, H. J. Sheen, and P. Y. Chiou, “Three dimensional microfluidics with embedded microball lenses for parallel and high throughput multicolor fluorescence detection,” Biomicrofluidics 7(4), 044121 (2013).
[Crossref] [PubMed]

Choi, H. W.

D. F. Farson, H. W. Choi, C. M. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluid channels in poly(methylmethacrylate),” J. Laser Appl. 18(3), 210–215 (2006).
[Crossref]

Choi, K. J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Choi, T. Y.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

Cloonan, T. J.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[Crossref]

Cochez, M.

M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget, and J. Mieloszynski, “Thermal degradation of poly (methyl methacrylate)(PMMA): modelling of DTG and TG curves,” Polym. Degrad. Stabil. 79(2), 271–281 (2003).
[Crossref]

Connell, G. A. N.

Crozier, K. B.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Dai, Q.

Q. Dai, R. Rajasekharan, H. Butt, X. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall microlens array based on vertically aligned carbon nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref] [PubMed]

Dandliker, R.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

Dändliker, R.

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, “Performance of an integrated microoptical system for fluorescence detection in microfluidic systems,” Anal. Chem. 74(14), 3400–3407 (2002).
[Crossref] [PubMed]

Dannberg, P.

R. Winston, P. Schreiber, S. Kudaev, P. Dannberg, U. D. Zeitner, and R. J. Koshel, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).

de Rooij, N. F.

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, “Performance of an integrated microoptical system for fluorescence detection in microfluidic systems,” Anal. Chem. 74(14), 3400–3407 (2002).
[Crossref] [PubMed]

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

Deng, Z.

Y. Hu, Q. Yang, F. Chen, H. Bian, Z. Deng, G. Du, J. Si, F. Yun, and X. Hou, “Cost-efficient and flexible fabrication of rectangular-shaped microlens arrays with controllable aspect ratio and spherical morphology,” Appl. Surf. Sci. 292, 285–290 (2014).
[Crossref]

Dholakia, K.

Du, G.

Y. Hu, Q. Yang, F. Chen, H. Bian, Z. Deng, G. Du, J. Si, F. Yun, and X. Hou, “Cost-efficient and flexible fabrication of rectangular-shaped microlens arrays with controllable aspect ratio and spherical morphology,” Appl. Surf. Sci. 292, 285–290 (2014).
[Crossref]

Duley, W. W.

A. Hu, M. Rybachuk, Q. B. Lu, and W. W. Duley, “Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation,” Appl. Phys. Lett. 91(13), 131906 (2007).
[Crossref]

C. Zheng, A. Hu, K. D. Kihm, Q. Ma, R. Li, T. Chen, and W. W. Duley, “Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging,” Small (2015), http://www.ncbi.nlm.nih.gov/pubmed/25740653 .
[PubMed]

Eaton, S.

Eisner, M.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Fan, Y. J.

Y. J. Fan, Y. C. Wu, Y. Chen, Y. C. Kung, T. H. Wu, K. W. Huang, H. J. Sheen, and P. Y. Chiou, “Three dimensional microfluidics with embedded microball lenses for parallel and high throughput multicolor fluorescence detection,” Biomicrofluidics 7(4), 044121 (2013).
[Crossref] [PubMed]

Farsari, M.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Farson, D. F.

D. F. Farson, H. W. Choi, C. M. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluid channels in poly(methylmethacrylate),” J. Laser Appl. 18(3), 210–215 (2006).
[Crossref]

Feldblum, A. Y.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[Crossref]

Feng, C.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Fernández-Pradas, J. M.

J. M. Fernández-Pradas, D. Serrano, P. Serra, and J. L. Morenza, “Laser fabricated microchannels inside photostructurable glass-ceramic,” Appl. Surf. Sci. 255(10), 5499–5502 (2009).
[Crossref]

Ferriol, M.

M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget, and J. Mieloszynski, “Thermal degradation of poly (methyl methacrylate)(PMMA): modelling of DTG and TG curves,” Polym. Degrad. Stabil. 79(2), 271–281 (2003).
[Crossref]

Frahm, R. E.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Fu, Y. Q.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
[Crossref]

Gadonas, R.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Gaidukeviciute, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Gasparyan, A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Gates, J. V.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Gentilhomme, A.

M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget, and J. Mieloszynski, “Thermal degradation of poly (methyl methacrylate)(PMMA): modelling of DTG and TG curves,” Polym. Degrad. Stabil. 79(2), 271–281 (2003).
[Crossref]

Gilbergs, H.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Grigoropoulos, C. P.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

Gunn-Moore, F. J.

Guo, W.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Handique, K.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
[Crossref] [PubMed]

Haselbeck, S.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Haueis, M.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

He, M.

Heldsinger, D.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
[Crossref] [PubMed]

Herman, P.

Herzig, H. P.

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, “Performance of an integrated microoptical system for fluorescence detection in microfluidic systems,” Anal. Chem. 74(14), 3400–3407 (2002).
[Crossref] [PubMed]

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Hinton, H. S.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[Crossref]

Hirao, K.

Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 10A), L1146–L1148 (1999).
[Crossref]

Hong, M.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Hongler, M. O.

Hou, C.

Hou, X.

Y. Hu, Q. Yang, F. Chen, H. Bian, Z. Deng, G. Du, J. Si, F. Yun, and X. Hou, “Cost-efficient and flexible fabrication of rectangular-shaped microlens arrays with controllable aspect ratio and spherical morphology,” Appl. Surf. Sci. 292, 285–290 (2014).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

Hu, A.

A. Hu, M. Rybachuk, Q. B. Lu, and W. W. Duley, “Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation,” Appl. Phys. Lett. 91(13), 131906 (2007).
[Crossref]

C. Zheng, A. Hu, K. D. Kihm, Q. Ma, R. Li, T. Chen, and W. W. Duley, “Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging,” Small (2015), http://www.ncbi.nlm.nih.gov/pubmed/25740653 .
[PubMed]

Hu, Y.

Y. Hu, Q. Yang, F. Chen, H. Bian, Z. Deng, G. Du, J. Si, F. Yun, and X. Hou, “Cost-efficient and flexible fabrication of rectangular-shaped microlens arrays with controllable aspect ratio and spherical morphology,” Appl. Surf. Sci. 292, 285–290 (2014).
[Crossref]

Huang, K. W.

Y. J. Fan, Y. C. Wu, Y. Chen, Y. C. Kung, T. H. Wu, K. W. Huang, H. J. Sheen, and P. Y. Chiou, “Three dimensional microfluidics with embedded microball lenses for parallel and high throughput multicolor fluorescence detection,” Biomicrofluidics 7(4), 044121 (2013).
[Crossref] [PubMed]

Huang, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Hwang, D. J.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

Ishii, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Ink-jet fabrication of polymer microlens for optical-I/O chip packaging,” Jpn. J. Appl. Phys. 39(1), 1490–1493 (2000).
[Crossref]

Jiang, L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Johnson, B. N.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
[Crossref] [PubMed]

Jones, D.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
[Crossref] [PubMed]

Jung, I.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Juodkazis, S.

R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

S. Juodkazis, S. Matsuo, H. Misawa, and K. Yamasaki, “Three-dimensional micro-channels in polymers: one-step fabrication,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 371–373 (2003).
[Crossref]

Kawachi, M.

Kawai, H.

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Kiel, H. J.

Kihm, K. D.

C. Zheng, A. Hu, K. D. Kihm, Q. Ma, R. Li, T. Chen, and W. W. Duley, “Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging,” Small (2015), http://www.ncbi.nlm.nih.gov/pubmed/25740653 .
[PubMed]

Kim, J.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Kim, M. J.

E. H. Park, M. J. Kim, and Y. S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photon. Technol. Lett. 11(4), 439–441 (1999).
[Crossref]

Kim, R. H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Koh, Y. H.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
[Crossref]

Koike, S.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Ink-jet fabrication of polymer microlens for optical-I/O chip packaging,” Jpn. J. Appl. Phys. 39(1), 1490–1493 (2000).
[Crossref]

Kolodner, P. R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Kondo, Y.

Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 10A), L1146–L1148 (1999).
[Crossref]

Koshel, R. J.

R. Winston, P. Schreiber, S. Kudaev, P. Dannberg, U. D. Zeitner, and R. J. Koshel, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).

Kraus, J. S.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Krishnan, M.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
[Crossref] [PubMed]

Kudaev, S.

R. Winston, P. Schreiber, S. Kudaev, P. Dannberg, U. D. Zeitner, and R. J. Koshel, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).

Kudryashov, V.

Kumar, B.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Kung, Y. C.

Y. J. Fan, Y. C. Wu, Y. Chen, Y. C. Kung, T. H. Wu, K. W. Huang, H. J. Sheen, and P. Y. Chiou, “Three dimensional microfluidics with embedded microball lenses for parallel and high throughput multicolor fluorescence detection,” Biomicrofluidics 7(4), 044121 (2013).
[Crossref] [PubMed]

Kwon, Y. S.

E. H. Park, M. J. Kim, and Y. S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photon. Technol. Lett. 11(4), 439–441 (1999).
[Crossref]

Lan, H. C.

Lee, L. J.

D. F. Farson, H. W. Choi, C. M. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluid channels in poly(methylmethacrylate),” J. Laser Appl. 18(3), 210–215 (2006).
[Crossref]

Lee, L. P.

D. Wu, J.-N. Wang, L.-G. Niu, X. L. Zhang, S. Z. Wu, Q.-D. Chen, L. P. Lee, and H. B. Sun, “Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging,” Adv. Opt. Mater. 2(8), 751–758 (2014).
[Crossref]

Lee, S.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Li, L.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Li, R.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

C. Zheng, A. Hu, K. D. Kihm, Q. Ma, R. Li, T. Chen, and W. W. Duley, “Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging,” Small (2015), http://www.ncbi.nlm.nih.gov/pubmed/25740653 .
[PubMed]

Li, Y.

Y. Li and S. Qu, “Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips,” Curr. Appl. Phys. 13(7), 1292–1295 (2013).
[Crossref]

Liang, W.

Lichtenwalner, C. P.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Lieuwen, D. F.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Lifton, V.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Lin, C. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Liu, D.

Liu, H.

Liu, Z.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Lu, C.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Lu, C. M.

D. F. Farson, H. W. Choi, C. M. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluid channels in poly(methylmethacrylate),” J. Laser Appl. 18(3), 210–215 (2006).
[Crossref]

Lu, Q. B.

A. Hu, M. Rybachuk, Q. B. Lu, and W. W. Duley, “Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation,” Appl. Phys. Lett. 91(13), 131906 (2007).
[Crossref]

Lucarini, V.

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Ma, N.

Ma, Q.

C. Zheng, A. Hu, K. D. Kihm, Q. Ma, R. Li, T. Chen, and W. W. Duley, “Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging,” Small (2015), http://www.ncbi.nlm.nih.gov/pubmed/25740653 .
[PubMed]

Malinauskas, M.

R. Buividas, S. Rekštytė, M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3(10), 1674–1686 (2013).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Malyarchuk, V.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Man, P. M.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
[Crossref] [PubMed]

Mastrangelo, C. H.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
[Crossref] [PubMed]

Masuda, M.

Matsuo, S.

S. Juodkazis, S. Matsuo, H. Misawa, and K. Yamasaki, “Three-dimensional micro-channels in polymers: one-step fabrication,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 371–373 (2003).
[Crossref]

McCormick, F. B.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[Crossref]

Mersereau, K. O.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[Crossref]

Merz, R.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

Midorikawa, K.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process. 85(1), 11–14 (2006).
[Crossref]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28(13), 1144–1146 (2003).
[Crossref] [PubMed]

Mieloszynski, J.

M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget, and J. Mieloszynski, “Thermal degradation of poly (methyl methacrylate)(PMMA): modelling of DTG and TG curves,” Polym. Degrad. Stabil. 79(2), 271–281 (2003).
[Crossref]

Misawa, H.

S. Juodkazis, S. Matsuo, H. Misawa, and K. Yamasaki, “Three-dimensional micro-channels in polymers: one-step fabrication,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 371–373 (2003).
[Crossref]

Mitsuyu, T.

Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 10A), L1146–L1148 (1999).
[Crossref]

Momot, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Morenza, J. L.

J. M. Fernández-Pradas, D. Serrano, P. Serra, and J. L. Morenza, “Laser fabricated microchannels inside photostructurable glass-ceramic,” Appl. Surf. Sci. 255(10), 5499–5502 (2009).
[Crossref]

Neilson, D. T.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Ngo, N. Q.

Niu, L.-G.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, J.-N. Wang, L.-G. Niu, X. L. Zhang, S. Z. Wu, Q.-D. Chen, L. P. Lee, and H. B. Sun, “Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging,” Adv. Opt. Mater. 2(8), 751–758 (2014).
[Crossref]

Nussbaum, P.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Nuzman, C. J.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Oget, N.

M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget, and J. Mieloszynski, “Thermal degradation of poly (methyl methacrylate)(PMMA): modelling of DTG and TG curves,” Polym. Degrad. Stabil. 79(2), 271–281 (2003).
[Crossref]

Okano, F.

Ong, L. S.

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89(14), 141108 (2006).
[Crossref]

Ong, N. S.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
[Crossref]

Osellame, R.

Ossmann, C.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

Paipulas, D.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Pan, J. W.

Papazian, A. R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Pardo, F.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Park, E. H.

E. H. Park, M. J. Kim, and Y. S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photon. Technol. Lett. 11(4), 439–441 (1999).
[Crossref]

Park, H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Perrie, W.

Piskarskas, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Popovic, Z. D.

Purlys, V.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Qiu, J.

Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 10A), L1146–L1148 (1999).
[Crossref]

Qiu, X.

Q. Dai, R. Rajasekharan, H. Butt, X. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall microlens array based on vertically aligned carbon nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref] [PubMed]

Qu, S.

Y. Li and S. Qu, “Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips,” Curr. Appl. Phys. 13(7), 1292–1295 (2013).
[Crossref]

Rajasekharan, R.

Q. Dai, R. Rajasekharan, H. Butt, X. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall microlens array based on vertically aligned carbon nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref] [PubMed]

Ramponi, R.

Ramsey, D. A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Rekštyte, S.

Rogers, J. A.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Roulet, J. C.

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, “Performance of an integrated microoptical system for fluorescence detection in microfluidic systems,” Anal. Chem. 74(14), 3400–3407 (2002).
[Crossref] [PubMed]

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

Rybachuk, M.

A. Hu, M. Rybachuk, Q. B. Lu, and W. W. Duley, “Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation,” Appl. Phys. Lett. 91(13), 131906 (2007).
[Crossref]

Ryf, R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Sakellari, I.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Sammarco, T. S.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
[Crossref] [PubMed]

Sasian, J. M.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[Crossref]

Schilling, A.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

Schlingloff, G.

Schober, A.

Schreiber, P.

R. Winston, P. Schreiber, S. Kudaev, P. Dannberg, U. D. Zeitner, and R. J. Koshel, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).

Scully, P. J.

Serra, P.

J. M. Fernández-Pradas, D. Serrano, P. Serra, and J. L. Morenza, “Laser fabricated microchannels inside photostructurable glass-ceramic,” Appl. Surf. Sci. 255(10), 5499–5502 (2009).
[Crossref]

Serrano, D.

J. M. Fernández-Pradas, D. Serrano, P. Serra, and J. L. Morenza, “Laser fabricated microchannels inside photostructurable glass-ceramic,” Appl. Surf. Sci. 255(10), 5499–5502 (2009).
[Crossref]

Shah, L.

Shea, H. R.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Sheen, H. J.

Y. J. Fan, Y. C. Wu, Y. Chen, Y. C. Kung, T. H. Wu, K. W. Huang, H. J. Sheen, and P. Y. Chiou, “Three dimensional microfluidics with embedded microball lenses for parallel and high throughput multicolor fluorescence detection,” Biomicrofluidics 7(4), 044121 (2013).
[Crossref] [PubMed]

Shihoyama, K.

Si, J.

Y. Hu, Q. Yang, F. Chen, H. Bian, Z. Deng, G. Du, J. Si, F. Yun, and X. Hou, “Cost-efficient and flexible fabrication of rectangular-shaped microlens arrays with controllable aspect ratio and spherical morphology,” Appl. Surf. Sci. 292, 285–290 (2014).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

Simon, M. E.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Siu, C. P. B.

Song, Y. M.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Sprague, R. A.

Stevenson, D. J.

Sugioka, K.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process. 85(1), 11–14 (2006).
[Crossref]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28(13), 1144–1146 (2003).
[Crossref] [PubMed]

Sun, H. B.

D. Wu, J.-N. Wang, L.-G. Niu, X. L. Zhang, S. Z. Wu, Q.-D. Chen, L. P. Lee, and H. B. Sun, “Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging,” Adv. Opt. Mater. 2(8), 751–758 (2014).
[Crossref]

Sun, W. S.

Sun, Y. Y.

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89(14), 141108 (2006).
[Crossref]

Teo, E. J.

A. A. Bettiol, C. N. B. Udalagama, E. J. Teo, J. A. van Kan, and F. Watt, “Embedded photonic structures fabricated in photosensitive glass using proton beam writing,” Nucl. Instrum. Methods Phys. Res. Sect. B 260, 357–361 (2007).

Tooley, F. A. P.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[Crossref]

Toyoda, K.

Tsai, H. L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process. 85(1), 11–14 (2006).
[Crossref]

Udalagama, C. N. B.

A. A. Bettiol, C. N. B. Udalagama, E. J. Teo, J. A. van Kan, and F. Watt, “Embedded photonic structures fabricated in photosensitive glass using proton beam writing,” Nucl. Instrum. Methods Phys. Res. Sect. B 260, 357–361 (2007).

van Kan, J. A.

A. A. Bettiol, C. N. B. Udalagama, E. J. Teo, J. A. van Kan, and F. Watt, “Embedded photonic structures fabricated in photosensitive glass using proton beam writing,” Nucl. Instrum. Methods Phys. Res. Sect. B 260, 357–361 (2007).

Verpoorte, E.

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, “Performance of an integrated microoptical system for fluorescence detection in microfluidic systems,” Anal. Chem. 74(14), 3400–3407 (2002).
[Crossref] [PubMed]

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

Vishnubhatla, K. C.

Volkel, R.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

Völkel, R.

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, “Performance of an integrated microoptical system for fluorescence detection in microfluidic systems,” Anal. Chem. 74(14), 3400–3407 (2002).
[Crossref] [PubMed]

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Wang, C. M.

Wang, J.-N.

D. Wu, J.-N. Wang, L.-G. Niu, X. L. Zhang, S. Z. Wu, Q.-D. Chen, L. P. Lee, and H. B. Sun, “Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging,” Adv. Opt. Mater. 2(8), 751–758 (2014).
[Crossref]

Wang, X.

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Watt, F.

A. A. Bettiol, C. N. B. Udalagama, E. J. Teo, J. A. van Kan, and F. Watt, “Embedded photonic structures fabricated in photosensitive glass using proton beam writing,” Nucl. Instrum. Methods Phys. Res. Sect. B 260, 357–361 (2007).

Webster, J. R.

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
[Crossref] [PubMed]

Weiss, A.

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

Wilkinson, T. D.

Q. Dai, R. Rajasekharan, H. Butt, X. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall microlens array based on vertically aligned carbon nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref] [PubMed]

Winston, R.

R. Winston, P. Schreiber, S. Kudaev, P. Dannberg, U. D. Zeitner, and R. J. Koshel, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).

Wu, D.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, J.-N. Wang, L.-G. Niu, X. L. Zhang, S. Z. Wu, Q.-D. Chen, L. P. Lee, and H. B. Sun, “Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging,” Adv. Opt. Mater. 2(8), 751–758 (2014).
[Crossref]

Wu, S. Z.

D. Wu, J.-N. Wang, L.-G. Niu, X. L. Zhang, S. Z. Wu, Q.-D. Chen, L. P. Lee, and H. B. Sun, “Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging,” Adv. Opt. Mater. 2(8), 751–758 (2014).
[Crossref]

Wu, S.-Z.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Wu, T. H.

Y. J. Fan, Y. C. Wu, Y. Chen, Y. C. Kung, T. H. Wu, K. W. Huang, H. J. Sheen, and P. Y. Chiou, “Three dimensional microfluidics with embedded microball lenses for parallel and high throughput multicolor fluorescence detection,” Biomicrofluidics 7(4), 044121 (2013).
[Crossref] [PubMed]

Wu, Y. C.

Y. J. Fan, Y. C. Wu, Y. Chen, Y. C. Kung, T. H. Wu, K. W. Huang, H. J. Sheen, and P. Y. Chiou, “Three dimensional microfluidics with embedded microball lenses for parallel and high throughput multicolor fluorescence detection,” Biomicrofluidics 7(4), 044121 (2013).
[Crossref] [PubMed]

Xiao, H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Xiao, J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Xie, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Xu, J.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Yamasaki, K.

S. Juodkazis, S. Matsuo, H. Misawa, and K. Yamasaki, “Three-dimensional micro-channels in polymers: one-step fabrication,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 371–373 (2003).
[Crossref]

Yan, Y.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Yang, Q.

Y. Hu, Q. Yang, F. Chen, H. Bian, Z. Deng, G. Du, J. Si, F. Yun, and X. Hou, “Cost-efficient and flexible fabrication of rectangular-shaped microlens arrays with controllable aspect ratio and spherical morphology,” Appl. Surf. Sci. 292, 285–290 (2014).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

Yoko, T.

Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 10A), L1146–L1148 (1999).
[Crossref]

Yoshino, F.

Yuan, X. C.

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89(14), 141108 (2006).
[Crossref]

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28(9), 731–733 (2003).
[Crossref] [PubMed]

Yun, F.

Y. Hu, Q. Yang, F. Chen, H. Bian, Z. Deng, G. Du, J. Si, F. Yun, and X. Hou, “Cost-efficient and flexible fabrication of rectangular-shaped microlens arrays with controllable aspect ratio and spherical morphology,” Appl. Surf. Sci. 292, 285–290 (2014).
[Crossref]

Zeitner, U. D.

R. Winston, P. Schreiber, S. Kudaev, P. Dannberg, U. D. Zeitner, and R. J. Koshel, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).

Zeng, H.

Zhang, H.

Zhang, X. L.

D. Wu, J.-N. Wang, L.-G. Niu, X. L. Zhang, S. Z. Wu, Q.-D. Chen, L. P. Lee, and H. B. Sun, “Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging,” Adv. Opt. Mater. 2(8), 751–758 (2014).
[Crossref]

Zheng, C.

C. Zheng, A. Hu, K. D. Kihm, Q. Ma, R. Li, T. Chen, and W. W. Duley, “Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging,” Small (2015), http://www.ncbi.nlm.nih.gov/pubmed/25740653 .
[PubMed]

Žukauskas, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

ACS Nano (1)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

D. Wu, J.-N. Wang, L.-G. Niu, X. L. Zhang, S. Z. Wu, Q.-D. Chen, L. P. Lee, and H. B. Sun, “Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging,” Adv. Opt. Mater. 2(8), 751–758 (2014).
[Crossref]

Anal. Chem. (1)

J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dändliker, “Performance of an integrated microoptical system for fluorescence detection in microfluidic systems,” Anal. Chem. 74(14), 3400–3407 (2002).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

A. Hu, M. Rybachuk, Q. B. Lu, and W. W. Duley, “Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation,” Appl. Phys. Lett. 91(13), 131906 (2007).
[Crossref]

Y. Y. Sun, L. S. Ong, and X. C. Yuan, “Composite-microlens-array-enabled microfluidic sorting,” Appl. Phys. Lett. 89(14), 141108 (2006).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, “Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining,” Appl. Phys., A Mater. Sci. Process. 85(1), 11–14 (2006).
[Crossref]

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

S. Juodkazis, S. Matsuo, H. Misawa, and K. Yamasaki, “Three-dimensional micro-channels in polymers: one-step fabrication,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 371–373 (2003).
[Crossref]

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[Crossref]

Appl. Surf. Sci. (2)

Y. Hu, Q. Yang, F. Chen, H. Bian, Z. Deng, G. Du, J. Si, F. Yun, and X. Hou, “Cost-efficient and flexible fabrication of rectangular-shaped microlens arrays with controllable aspect ratio and spherical morphology,” Appl. Surf. Sci. 292, 285–290 (2014).
[Crossref]

J. M. Fernández-Pradas, D. Serrano, P. Serra, and J. L. Morenza, “Laser fabricated microchannels inside photostructurable glass-ceramic,” Appl. Surf. Sci. 255(10), 5499–5502 (2009).
[Crossref]

Biomed. Opt. Express (1)

Biomicrofluidics (1)

Y. J. Fan, Y. C. Wu, Y. Chen, Y. C. Kung, T. H. Wu, K. W. Huang, H. J. Sheen, and P. Y. Chiou, “Three dimensional microfluidics with embedded microball lenses for parallel and high throughput multicolor fluorescence detection,” Biomicrofluidics 7(4), 044121 (2013).
[Crossref] [PubMed]

Curr. Appl. Phys. (1)

Y. Li and S. Qu, “Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips,” Curr. Appl. Phys. 13(7), 1292–1295 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

E. H. Park, M. J. Kim, and Y. S. Kwon, “Microlens for efficient coupling between LED and optical fiber,” IEEE Photon. Technol. Lett. 11(4), 439–441 (1999).
[Crossref]

IEEE. Photon. Technol. Lett. (1)

J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100 x 1100 port MEMS-based optical crossconnect with 4-dB maximum loss,” IEEE. Photon. Technol. Lett. 15(11), 1537–1539 (2003).
[Crossref]

J. Laser Appl. (1)

D. F. Farson, H. W. Choi, C. M. Lu, and L. J. Lee, “Femtosecond laser bulk micromachining of microfluid channels in poly(methylmethacrylate),” J. Laser Appl. 18(3), 210–215 (2006).
[Crossref]

J. Microelectromech. Syst. (1)

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[Crossref]

J. Opt. (1)

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Ink-jet fabrication of polymer microlens for optical-I/O chip packaging,” Jpn. J. Appl. Phys. 39(1), 1490–1493 (2000).
[Crossref]

Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, “Three-dimensional microdrilling of glass by multiphoton process and chemical etching,” Jpn. J. Appl. Phys. 38(Part 2, No. 10A), L1146–L1148 (1999).
[Crossref]

Light Sci. Appl. (1)

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Microelectron. Eng. (1)

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
[Crossref]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref] [PubMed]

Nature (1)

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. Sect. B (1)

A. A. Bettiol, C. N. B. Udalagama, E. J. Teo, J. A. van Kan, and F. Watt, “Embedded photonic structures fabricated in photosensitive glass using proton beam writing,” Nucl. Instrum. Methods Phys. Res. Sect. B 260, 357–361 (2007).

Opt. Eng. (1)

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39(8), 2171–2176 (2000).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[Crossref]

Polym. Degrad. Stabil. (1)

M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget, and J. Mieloszynski, “Thermal degradation of poly (methyl methacrylate)(PMMA): modelling of DTG and TG curves,” Polym. Degrad. Stabil. 79(2), 271–281 (2003).
[Crossref]

Proc. SPIE (1)

R. Winston, P. Schreiber, S. Kudaev, P. Dannberg, U. D. Zeitner, and R. J. Koshel, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005).

Pure Appl. Opt. (1)

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Science (1)

M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science 282(5388), 484–487 (1998).
[Crossref] [PubMed]

Small (1)

Q. Dai, R. Rajasekharan, H. Butt, X. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall microlens array based on vertically aligned carbon nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref] [PubMed]

Other (2)

C. Zheng, A. Hu, K. D. Kihm, Q. Ma, R. Li, T. Chen, and W. W. Duley, “Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging,” Small (2015), http://www.ncbi.nlm.nih.gov/pubmed/25740653 .
[PubMed]

H. Zappe, Fundamentals of Micro-Optics (Cambridge University, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Experimental configurations and the schematic for the fabrication of different types of embedded microball lens (VMBL and CMBL): (i) VMBL is fabricated when laser power intensity is adjusted to in a relatively low level at which a refractive index modified region generated after laser irradiation. (b) CMBL is fabricated at a relatively higher power level at which an embedded micro-cavity formed after manufacturing.
Fig. 2
Fig. 2 The structural development of microlenses with different average power. (a) A melted region is generated accompanied with cracks at the center of the ablated region (30 mW, 1.8 × 1013W/cm2). (b) and (c) shows nonuniform affected zones are created with sharp edges (50 mW, 3.0 × 1013W/cm2) and will be smoother if further increase the average power (70 mW, 4.2 × 1013W/cm2). (d) A uniform and symmetric VMBL is generated (90 mW, 5.4 × 1013W/cm2). (e) A bubble is generated and formed a cavity at the edge of the affected zone (130 mW, 7.8 × 1013W/cm2). (f) and (g) shows bubble is generated nonuniformly with insufficient energy (150 mW ~170 mW, 9.1 × 1013W/cm2 ~1.0 × 1014W/cm2). (h) Symmetric CMBL is generated when average power reaches 400 mW (2.4 × 1014 W/cm2).
Fig. 3
Fig. 3 Development of the CMBL sizes when increasing the average laser power. The inset figures shows with processing window for a symmetric CMBL is from 400 mW to 1.5 W (2.4 × 1014 W/cm2 ~9.1 × 1014 W/cm2), otherwise an aspherical cavity or over-ablated CMBL will generated if the laser average power is insufficient or excessive.
Fig. 4
Fig. 4 The dimension developments of VMBL and its image with the cooling time. (a) shows that the diameter of VMBL slightly increased after cooling for 80 min, meanwhile the image taken by the cooled VMBL shows distinguished increase. (b) illustrates the diameter development of VMBL and its image with the cooling time.
Fig. 5
Fig. 5 (a) A micro-telescope is constructed with microball lens and microscopic objective, enables telescopic imaging of the brightened mask as illustrated. Images captured by a micro-telescopic system with the front lens of (b) VMBL or (c) CMBL.
Fig. 6
Fig. 6 Shape control of CMBL horizontally (along X-axis or Y-axis) and vertically (along Z-axis) by scanning with the laser for 1~7 cycles in 5s. (a) Scan with a 1.2 W laser power at a repetition rate 120 kHz in a scanning distance for 80 μm. (b) Scan with a 1.4 W laser power at a repetition rate 120 kHz in a scanning distance for 45 μm. (c) An X-axis shape controlled sample. (d) A Z-axis shape controlled sample.
Fig. 7
Fig. 7 Z-axis shape control of CMBL scanning at a speed of 72 μm/s and a distance 45 μm for 4 cycles while irradiation. (a) The image of a letter “F” taken by a CMBL with a spherical cavity fabricated without Z-axis shape control. (b) The side view of the CMBL with spherical cavity. (c) The image of a letter “F” taken by a CMBL with an elliptical cavity after Z-axis shape control. (d) The side view of the CMBL with elliptical cavity.
Fig. 8
Fig. 8 Optical properties of CMBL with different shapes. (a) ~(c) Spherical cavity CMBL and elliptical cavity CMBLs; (d) ~(f) The geometric image of a letter “F”; (g) ~(i) The distortion curves when imaging with different CMBLs. The colorful curves represents the distortion curve of the incident light with different wavelengths, in which the blue light (484 nm), the green light (588 nm), and red light (656 nm) are represented by the curves with the same color.
Fig. 9
Fig. 9 Snap shot of the stress wavefront propagation process.
Fig. 10
Fig. 10 (a) The boundary deformation caused by the stress wavefront. The defects are partially cured and the boundary of the fabricated CMBL is smoother. (b) The diameters of the cavity regions (CR) and the affected zones (AZ) develop with different annealing temperature ranging from 70 °C to 90 °C. (c) The CMBL sample annealed in 100 °C.
Fig. 11
Fig. 11 (a) Imaging of the word “UT” with 5 × 4 CMBL array. (b) Imaging of a lightened ring mask with a 4 × 3 VMBLs array. (c) A Letter “UT” is imaged with this VMBL array.

Metrics