Abstract

We report dressed intensity noise correlation and intensity-difference squeezing based on spontaneous parametric four-wave mixing (SP-FWM) in Pr3+:Y2SiO5 crystal both experimentally and theoretically. We found such intensity noise correlation and intensity-difference squeezing can be controlled by using the dressing effect to manipulate the nonlinear optical coefficient of the SP-FWM process. By changing detuning and power of the optical field, we manipulate the nonlinear optical coefficient of the SP-FWM process, thus control the correlation and squeezing. The results show stronger correlation and squeezing with single dressing, while weaker near the resonant point due to destructive double dressing. Furthermore,we observed the dependence of correlation times on the power of dressing field, and explained by the combination of the dressing effect and induced dipole-dipole interaction. We also showed the fourth-order fluorescence signals accompanying with the SP-FWM process.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controllable lifetime of fourth-order fluorescence and spontaneous parametric four-wave mixing in Pr3+:YSO

Changbiao Li, Zihai Jiang, Tao Jiang, Hua Zhong, Feng Ma, Shi Li, and Yanpeng Zhang
J. Opt. Soc. Am. B 32(11) 2250-2256 (2015)

Controlling fluorescence and noise correlation by phonon and double dressing in two types of Pr3+:YSO

Abubakkar Khan, Faizan Raza, Irfan Ahmed, Changbiao Li, Al Imran, Habib Ullah, and Yanpeng Zhang
J. Opt. Soc. Am. B 36(8) 1995-2000 (2019)

Optical temperature sensor and switch controlled by competition between phonon and polarization dressing in Pr3+:YSO

Abubakkar Khan, Faizan Raza, Irfan Ahmed, Siqiang Zhang, Changbiao Li, Al Imran, and Yanpeng Zhang
OSA Continuum 2(3) 786-796 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Wang, D. Du, Y. Fan, A. Li, L. Wang, X. Wei, Z. Kang, Y. Jiang, J. Wu, and J. Gao, “Enhaned four-wave mixing by atomic coherence in Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 93(23), 231107 (2008).
    [Crossref]
  2. H. Wang, Z. Kang, Y. Jiang, Y. Li, D. Du, X. Wei, J. Wu, and J. Gao, “Erasure of stored optical information in a Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 92(1), 011105 (2008).
    [Crossref]
  3. Y. Zhao, C. Wu, B. Ham, M. Kim, and E. Awad, “Microwave induced transparency in Ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
    [Crossref]
  4. C. Wei and N. Manson, “Observation of electromagnetically induced transparency within an electron spin resonance transition,” J. Opt. B 1(4), 464–468 (1999).
    [Crossref]
  5. B. Ham, P. Hemmer, and M. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144(4-6), 227–230 (1997).
    [Crossref]
  6. M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via Biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
    [Crossref] [PubMed]
  7. Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79(6), 063839 (2009).
    [Crossref]
  8. M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
    [Crossref] [PubMed]
  9. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
    [Crossref] [PubMed]
  10. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
    [Crossref] [PubMed]
  11. F. Beil, J. Klein, G. Nikoghosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a Λ-type and a V-type level scheme in Pr3+:Y2SiO5,” J. Phys. B 41(7), 074001 (2008).
    [Crossref]
  12. C. Li, L. Wang, H. Zheng, H. Lan, C. Lei, D. Zhang, M. Xiao, and Y. Zhang, “All-optically controlled fourth- and sixth-order fluorescnece processess of Pr3+: YSO,” Appl. Phys. Lett. 104(5), 051912 (2014).
    [Crossref]
  13. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
    [Crossref] [PubMed]
  14. A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of quantum noise reduction on twin laser beams,” Phys. Rev. Lett. 59(22), 2555–2557 (1987).
    [Crossref] [PubMed]
  15. A. S. Coelho, F. A. Barbosa, K. N. Cassemiro, A. S. Villar, M. Martinelli, and P. Nussenzveig, “Three-color entanglement,” Science 326, 823 (2009).
    [Crossref] [PubMed]
  16. H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in atomic ensemble,” Laser Phys. Lett. 11(4), 045201 (2014).
    [Crossref]
  17. Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
    [Crossref] [PubMed]
  18. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
    [Crossref] [PubMed]
  19. B. Wu and M. Xiao, “Bright correlated twin beams from an atomic ensemble in the optical cavity,” Phys. Rev. A 80(6), 063415 (2009).
    [Crossref]
  20. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
    [Crossref] [PubMed]
  21. Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multi wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
    [Crossref]
  22. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]

2014 (2)

C. Li, L. Wang, H. Zheng, H. Lan, C. Lei, D. Zhang, M. Xiao, and Y. Zhang, “All-optically controlled fourth- and sixth-order fluorescnece processess of Pr3+: YSO,” Appl. Phys. Lett. 104(5), 051912 (2014).
[Crossref]

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in atomic ensemble,” Laser Phys. Lett. 11(4), 045201 (2014).
[Crossref]

2013 (1)

M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
[Crossref] [PubMed]

2009 (4)

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79(6), 063839 (2009).
[Crossref]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

B. Wu and M. Xiao, “Bright correlated twin beams from an atomic ensemble in the optical cavity,” Phys. Rev. A 80(6), 063415 (2009).
[Crossref]

A. S. Coelho, F. A. Barbosa, K. N. Cassemiro, A. S. Villar, M. Martinelli, and P. Nussenzveig, “Three-color entanglement,” Science 326, 823 (2009).
[Crossref] [PubMed]

2008 (5)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[Crossref] [PubMed]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multi wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

F. Beil, J. Klein, G. Nikoghosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a Λ-type and a V-type level scheme in Pr3+:Y2SiO5,” J. Phys. B 41(7), 074001 (2008).
[Crossref]

H. Wang, D. Du, Y. Fan, A. Li, L. Wang, X. Wei, Z. Kang, Y. Jiang, J. Wu, and J. Gao, “Enhaned four-wave mixing by atomic coherence in Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 93(23), 231107 (2008).
[Crossref]

H. Wang, Z. Kang, Y. Jiang, Y. Li, D. Du, X. Wei, J. Wu, and J. Gao, “Erasure of stored optical information in a Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 92(1), 011105 (2008).
[Crossref]

2007 (1)

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

2005 (2)

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

2003 (1)

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via Biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref] [PubMed]

2001 (1)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

1999 (1)

C. Wei and N. Manson, “Observation of electromagnetically induced transparency within an electron spin resonance transition,” J. Opt. B 1(4), 464–468 (1999).
[Crossref]

1997 (2)

B. Ham, P. Hemmer, and M. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144(4-6), 227–230 (1997).
[Crossref]

Y. Zhao, C. Wu, B. Ham, M. Kim, and E. Awad, “Microwave induced transparency in Ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
[Crossref]

1992 (1)

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref] [PubMed]

1987 (1)

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of quantum noise reduction on twin laser beams,” Phys. Rev. Lett. 59(22), 2555–2557 (1987).
[Crossref] [PubMed]

Anderson, B.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

Awad, E.

Y. Zhao, C. Wu, B. Ham, M. Kim, and E. Awad, “Microwave induced transparency in Ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
[Crossref]

Barbosa, F. A.

A. S. Coelho, F. A. Barbosa, K. N. Cassemiro, A. S. Villar, M. Martinelli, and P. Nussenzveig, “Three-color entanglement,” Science 326, 823 (2009).
[Crossref] [PubMed]

Beil, F.

F. Beil, J. Klein, G. Nikoghosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a Λ-type and a V-type level scheme in Pr3+:Y2SiO5,” J. Phys. B 41(7), 074001 (2008).
[Crossref]

Binder, R.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via Biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref] [PubMed]

Boyer, V.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[Crossref] [PubMed]

Brown, A. W.

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

Camy, G.

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of quantum noise reduction on twin laser beams,” Phys. Rev. Lett. 59(22), 2555–2557 (1987).
[Crossref] [PubMed]

Cassemiro, K. N.

A. S. Coelho, F. A. Barbosa, K. N. Cassemiro, A. S. Villar, M. Martinelli, and P. Nussenzveig, “Three-color entanglement,” Science 326, 823 (2009).
[Crossref] [PubMed]

Chen, H.

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in atomic ensemble,” Laser Phys. Lett. 11(4), 045201 (2014).
[Crossref]

Coelho, A. S.

A. S. Coelho, F. A. Barbosa, K. N. Cassemiro, A. S. Villar, M. Martinelli, and P. Nussenzveig, “Three-color entanglement,” Science 326, 823 (2009).
[Crossref] [PubMed]

Du, D.

H. Wang, D. Du, Y. Fan, A. Li, L. Wang, X. Wei, Z. Kang, Y. Jiang, J. Wu, and J. Gao, “Enhaned four-wave mixing by atomic coherence in Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 93(23), 231107 (2008).
[Crossref]

H. Wang, Z. Kang, Y. Jiang, Y. Li, D. Du, X. Wei, J. Wu, and J. Gao, “Erasure of stored optical information in a Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 92(1), 011105 (2008).
[Crossref]

Du, Y.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79(6), 063839 (2009).
[Crossref]

Fabre, C.

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of quantum noise reduction on twin laser beams,” Phys. Rev. Lett. 59(22), 2555–2557 (1987).
[Crossref] [PubMed]

Fan, Y.

H. Wang, D. Du, Y. Fan, A. Li, L. Wang, X. Wei, Z. Kang, Y. Jiang, J. Wu, and J. Gao, “Enhaned four-wave mixing by atomic coherence in Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 93(23), 231107 (2008).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref] [PubMed]

Gao, J.

H. Wang, Z. Kang, Y. Jiang, Y. Li, D. Du, X. Wei, J. Wu, and J. Gao, “Erasure of stored optical information in a Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 92(1), 011105 (2008).
[Crossref]

H. Wang, D. Du, Y. Fan, A. Li, L. Wang, X. Wei, Z. Kang, Y. Jiang, J. Wu, and J. Gao, “Enhaned four-wave mixing by atomic coherence in Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 93(23), 231107 (2008).
[Crossref]

Giacobino, E.

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of quantum noise reduction on twin laser beams,” Phys. Rev. Lett. 59(22), 2555–2557 (1987).
[Crossref] [PubMed]

Halfmann, T.

F. Beil, J. Klein, G. Nikoghosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a Λ-type and a V-type level scheme in Pr3+:Y2SiO5,” J. Phys. B 41(7), 074001 (2008).
[Crossref]

Ham, B.

B. Ham, P. Hemmer, and M. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144(4-6), 227–230 (1997).
[Crossref]

Y. Zhao, C. Wu, B. Ham, M. Kim, and E. Awad, “Microwave induced transparency in Ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
[Crossref]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

Heidmann, A.

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of quantum noise reduction on twin laser beams,” Phys. Rev. Lett. 59(22), 2555–2557 (1987).
[Crossref] [PubMed]

Hemmer, P.

B. Ham, P. Hemmer, and M. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144(4-6), 227–230 (1997).
[Crossref]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

Horowicz, R. J.

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of quantum noise reduction on twin laser beams,” Phys. Rev. Lett. 59(22), 2555–2557 (1987).
[Crossref] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Jiang, Y.

H. Wang, Z. Kang, Y. Jiang, Y. Li, D. Du, X. Wei, J. Wu, and J. Gao, “Erasure of stored optical information in a Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 92(1), 011105 (2008).
[Crossref]

H. Wang, D. Du, Y. Fan, A. Li, L. Wang, X. Wei, Z. Kang, Y. Jiang, J. Wu, and J. Gao, “Enhaned four-wave mixing by atomic coherence in Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 93(23), 231107 (2008).
[Crossref]

Kang, Z.

H. Wang, D. Du, Y. Fan, A. Li, L. Wang, X. Wei, Z. Kang, Y. Jiang, J. Wu, and J. Gao, “Enhaned four-wave mixing by atomic coherence in Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 93(23), 231107 (2008).
[Crossref]

H. Wang, Z. Kang, Y. Jiang, Y. Li, D. Du, X. Wei, J. Wu, and J. Gao, “Erasure of stored optical information in a Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 92(1), 011105 (2008).
[Crossref]

Khadka, U.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

Kim, M.

Y. Zhao, C. Wu, B. Ham, M. Kim, and E. Awad, “Microwave induced transparency in Ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
[Crossref]

Kimble, H. J.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref] [PubMed]

Klein, J.

F. Beil, J. Klein, G. Nikoghosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a Λ-type and a V-type level scheme in Pr3+:Y2SiO5,” J. Phys. B 41(7), 074001 (2008).
[Crossref]

Kröll, S.

M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
[Crossref] [PubMed]

Kwong, N. H.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via Biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref] [PubMed]

Lan, H.

C. Li, L. Wang, H. Zheng, H. Lan, C. Lei, D. Zhang, M. Xiao, and Y. Zhang, “All-optically controlled fourth- and sixth-order fluorescnece processess of Pr3+: YSO,” Appl. Phys. Lett. 104(5), 051912 (2014).
[Crossref]

Lei, C.

C. Li, L. Wang, H. Zheng, H. Lan, C. Lei, D. Zhang, M. Xiao, and Y. Zhang, “All-optically controlled fourth- and sixth-order fluorescnece processess of Pr3+: YSO,” Appl. Phys. Lett. 104(5), 051912 (2014).
[Crossref]

Lett, P. D.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[Crossref] [PubMed]

Li, A.

H. Wang, D. Du, Y. Fan, A. Li, L. Wang, X. Wei, Z. Kang, Y. Jiang, J. Wu, and J. Gao, “Enhaned four-wave mixing by atomic coherence in Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 93(23), 231107 (2008).
[Crossref]

Li, C.

C. Li, L. Wang, H. Zheng, H. Lan, C. Lei, D. Zhang, M. Xiao, and Y. Zhang, “All-optically controlled fourth- and sixth-order fluorescnece processess of Pr3+: YSO,” Appl. Phys. Lett. 104(5), 051912 (2014).
[Crossref]

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79(6), 063839 (2009).
[Crossref]

Li, P.

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multi wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

Li, Q.

M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
[Crossref] [PubMed]

Li, Y.

H. Wang, Z. Kang, Y. Jiang, Y. Li, D. Du, X. Wei, J. Wu, and J. Gao, “Erasure of stored optical information in a Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 92(1), 011105 (2008).
[Crossref]

Longdell, J. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref] [PubMed]

Lu, K.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79(6), 063839 (2009).
[Crossref]

Manson, N.

C. Wei and N. Manson, “Observation of electromagnetically induced transparency within an electron spin resonance transition,” J. Opt. B 1(4), 464–468 (1999).
[Crossref]

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Marino, A. M.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[Crossref] [PubMed]

Martinelli, M.

A. S. Coelho, F. A. Barbosa, K. N. Cassemiro, A. S. Villar, M. Martinelli, and P. Nussenzveig, “Three-color entanglement,” Science 326, 823 (2009).
[Crossref] [PubMed]

Mohan, R. K.

M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
[Crossref] [PubMed]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

Nie, Z.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79(6), 063839 (2009).
[Crossref]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multi wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

Nikoghosyan, G.

F. Beil, J. Klein, G. Nikoghosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a Λ-type and a V-type level scheme in Pr3+:Y2SiO5,” J. Phys. B 41(7), 074001 (2008).
[Crossref]

Nussenzveig, P.

A. S. Coelho, F. A. Barbosa, K. N. Cassemiro, A. S. Villar, M. Martinelli, and P. Nussenzveig, “Three-color entanglement,” Science 326, 823 (2009).
[Crossref] [PubMed]

Ou, Z. Y.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref] [PubMed]

Peng, K. C.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref] [PubMed]

Pereira, S. F.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref] [PubMed]

Phillips, M. C.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via Biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref] [PubMed]

Pooser, R. C.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[Crossref] [PubMed]

Qin, M.

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in atomic ensemble,” Laser Phys. Lett. 11(4), 045201 (2014).
[Crossref]

Reynaud, S.

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of quantum noise reduction on twin laser beams,” Phys. Rev. Lett. 59(22), 2555–2557 (1987).
[Crossref] [PubMed]

Rippe, L.

M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
[Crossref] [PubMed]

Rumyantsev, I.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via Biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref] [PubMed]

Sabooni, M.

M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
[Crossref] [PubMed]

Sellars, M. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref] [PubMed]

Shahriar, M.

B. Ham, P. Hemmer, and M. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144(4-6), 227–230 (1997).
[Crossref]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

Shi, M.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79(6), 063839 (2009).
[Crossref]

Song, J.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79(6), 063839 (2009).
[Crossref]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

Takayama, R.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via Biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref] [PubMed]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

Villar, A. S.

A. S. Coelho, F. A. Barbosa, K. N. Cassemiro, A. S. Villar, M. Martinelli, and P. Nussenzveig, “Three-color entanglement,” Science 326, 823 (2009).
[Crossref] [PubMed]

Wang, H.

H. Wang, Z. Kang, Y. Jiang, Y. Li, D. Du, X. Wei, J. Wu, and J. Gao, “Erasure of stored optical information in a Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 92(1), 011105 (2008).
[Crossref]

H. Wang, D. Du, Y. Fan, A. Li, L. Wang, X. Wei, Z. Kang, Y. Jiang, J. Wu, and J. Gao, “Enhaned four-wave mixing by atomic coherence in Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 93(23), 231107 (2008).
[Crossref]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via Biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref] [PubMed]

Wang, L.

C. Li, L. Wang, H. Zheng, H. Lan, C. Lei, D. Zhang, M. Xiao, and Y. Zhang, “All-optically controlled fourth- and sixth-order fluorescnece processess of Pr3+: YSO,” Appl. Phys. Lett. 104(5), 051912 (2014).
[Crossref]

H. Wang, D. Du, Y. Fan, A. Li, L. Wang, X. Wei, Z. Kang, Y. Jiang, J. Wu, and J. Gao, “Enhaned four-wave mixing by atomic coherence in Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 93(23), 231107 (2008).
[Crossref]

Wang, R.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79(6), 063839 (2009).
[Crossref]

Wei, C.

C. Wei and N. Manson, “Observation of electromagnetically induced transparency within an electron spin resonance transition,” J. Opt. B 1(4), 464–468 (1999).
[Crossref]

Wei, X.

H. Wang, D. Du, Y. Fan, A. Li, L. Wang, X. Wei, Z. Kang, Y. Jiang, J. Wu, and J. Gao, “Enhaned four-wave mixing by atomic coherence in Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 93(23), 231107 (2008).
[Crossref]

H. Wang, Z. Kang, Y. Jiang, Y. Li, D. Du, X. Wei, J. Wu, and J. Gao, “Erasure of stored optical information in a Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 92(1), 011105 (2008).
[Crossref]

Wen, F.

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in atomic ensemble,” Laser Phys. Lett. 11(4), 045201 (2014).
[Crossref]

Wen, J.

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in atomic ensemble,” Laser Phys. Lett. 11(4), 045201 (2014).
[Crossref]

Wu, B.

B. Wu and M. Xiao, “Bright correlated twin beams from an atomic ensemble in the optical cavity,” Phys. Rev. A 80(6), 063415 (2009).
[Crossref]

Wu, C.

Y. Zhao, C. Wu, B. Ham, M. Kim, and E. Awad, “Microwave induced transparency in Ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
[Crossref]

Wu, J.

H. Wang, Z. Kang, Y. Jiang, Y. Li, D. Du, X. Wei, J. Wu, and J. Gao, “Erasure of stored optical information in a Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 92(1), 011105 (2008).
[Crossref]

H. Wang, D. Du, Y. Fan, A. Li, L. Wang, X. Wei, Z. Kang, Y. Jiang, J. Wu, and J. Gao, “Enhaned four-wave mixing by atomic coherence in Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 93(23), 231107 (2008).
[Crossref]

Xiao, M.

C. Li, L. Wang, H. Zheng, H. Lan, C. Lei, D. Zhang, M. Xiao, and Y. Zhang, “All-optically controlled fourth- and sixth-order fluorescnece processess of Pr3+: YSO,” Appl. Phys. Lett. 104(5), 051912 (2014).
[Crossref]

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79(6), 063839 (2009).
[Crossref]

B. Wu and M. Xiao, “Bright correlated twin beams from an atomic ensemble in the optical cavity,” Phys. Rev. A 80(6), 063415 (2009).
[Crossref]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multi wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

Yang, Y.

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multi wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

Zhang, D.

C. Li, L. Wang, H. Zheng, H. Lan, C. Lei, D. Zhang, M. Xiao, and Y. Zhang, “All-optically controlled fourth- and sixth-order fluorescnece processess of Pr3+: YSO,” Appl. Phys. Lett. 104(5), 051912 (2014).
[Crossref]

Zhang, X.

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in atomic ensemble,” Laser Phys. Lett. 11(4), 045201 (2014).
[Crossref]

Zhang, Y.

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in atomic ensemble,” Laser Phys. Lett. 11(4), 045201 (2014).
[Crossref]

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in atomic ensemble,” Laser Phys. Lett. 11(4), 045201 (2014).
[Crossref]

C. Li, L. Wang, H. Zheng, H. Lan, C. Lei, D. Zhang, M. Xiao, and Y. Zhang, “All-optically controlled fourth- and sixth-order fluorescnece processess of Pr3+: YSO,” Appl. Phys. Lett. 104(5), 051912 (2014).
[Crossref]

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79(6), 063839 (2009).
[Crossref]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multi wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, C. Wu, B. Ham, M. Kim, and E. Awad, “Microwave induced transparency in Ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
[Crossref]

Zheng, H.

C. Li, L. Wang, H. Zheng, H. Lan, C. Lei, D. Zhang, M. Xiao, and Y. Zhang, “All-optically controlled fourth- and sixth-order fluorescnece processess of Pr3+: YSO,” Appl. Phys. Lett. 104(5), 051912 (2014).
[Crossref]

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79(6), 063839 (2009).
[Crossref]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multi wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

Zuo, C.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79(6), 063839 (2009).
[Crossref]

Appl. Phys. Lett. (3)

H. Wang, D. Du, Y. Fan, A. Li, L. Wang, X. Wei, Z. Kang, Y. Jiang, J. Wu, and J. Gao, “Enhaned four-wave mixing by atomic coherence in Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 93(23), 231107 (2008).
[Crossref]

H. Wang, Z. Kang, Y. Jiang, Y. Li, D. Du, X. Wei, J. Wu, and J. Gao, “Erasure of stored optical information in a Pr3+:Y2SiO5 crystal,” Appl. Phys. Lett. 92(1), 011105 (2008).
[Crossref]

C. Li, L. Wang, H. Zheng, H. Lan, C. Lei, D. Zhang, M. Xiao, and Y. Zhang, “All-optically controlled fourth- and sixth-order fluorescnece processess of Pr3+: YSO,” Appl. Phys. Lett. 104(5), 051912 (2014).
[Crossref]

J. Opt. B (1)

C. Wei and N. Manson, “Observation of electromagnetically induced transparency within an electron spin resonance transition,” J. Opt. B 1(4), 464–468 (1999).
[Crossref]

J. Phys. B (1)

F. Beil, J. Klein, G. Nikoghosyan, and T. Halfmann, “Electromagnetically induced transparency and retrieval of light pulses in a Λ-type and a V-type level scheme in Pr3+:Y2SiO5,” J. Phys. B 41(7), 074001 (2008).
[Crossref]

Laser Phys. Lett. (1)

H. Chen, M. Qin, Y. Zhang, X. Zhang, F. Wen, J. Wen, and Y. Zhang, “Parametric amplification of dressed multi-wave mixing in atomic ensemble,” Laser Phys. Lett. 11(4), 045201 (2014).
[Crossref]

Opt. Commun. (1)

B. Ham, P. Hemmer, and M. Shahriar, “Efficient electromagnetically induced transparency in a rare-earth doped crystal,” Opt. Commun. 144(4-6), 227–230 (1997).
[Crossref]

Phys. Rev. A (3)

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79(6), 063839 (2009).
[Crossref]

B. Wu and M. Xiao, “Bright correlated twin beams from an atomic ensemble in the optical cavity,” Phys. Rev. A 80(6), 063415 (2009).
[Crossref]

Z. Nie, H. Zheng, P. Li, Y. Yang, Y. Zhang, and M. Xiao, “Interacting multi wave mixing in a five-level atomic system,” Phys. Rev. A 77(6), 063829 (2008).
[Crossref]

Phys. Rev. Lett. (9)

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref] [PubMed]

A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of quantum noise reduction on twin laser beams,” Phys. Rev. Lett. 59(22), 2555–2557 (1987).
[Crossref] [PubMed]

M. Sabooni, Q. Li, L. Rippe, R. K. Mohan, and S. Kröll, “Spectral engineering of slow light, cavity line narrowing, and pulse compression,” Phys. Rev. Lett. 111(18), 183602 (2013).
[Crossref] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[Crossref] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref] [PubMed]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via Biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref] [PubMed]

Y. Zhao, C. Wu, B. Ham, M. Kim, and E. Awad, “Microwave induced transparency in Ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Science (2)

A. S. Coelho, F. A. Barbosa, K. N. Cassemiro, A. S. Villar, M. Martinelli, and P. Nussenzveig, “Three-color entanglement,” Science 326, 823 (2009).
[Crossref] [PubMed]

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Two three-level subsystems (Λ-type and V-type) in Pr3+:YSO crystal and the laser coupling configuration. (b) Experimental setup scheme. Δi: frequency detuning of (E)i field, FL: fluorescence, D: photomultiplier tube, PBS: polarized beam splitter, BS: beam splitter, and L: lens
Fig. 2
Fig. 2 (a) Spectrum intensity of signals: (a1) Stokes SP-FWM signal, and (a2)fluorescence signal in Λ-type level system; (b1-b7) Intensity Noise correlation functions G ( 2 ) ( τ ) of Stokes and anti-Stokes versus delayed time τ, with Δ1 set to −200GHz, −170GHz, −92GHz, 0GHz, 92GHz, 170GHz and 200 GHz, respectively; (c1-c7) Intensity-difference squeezing versus analysis frequency ω obtained with the same experimental parameters to (b1-b7), respectively; (d1) Detuning dependence of the correlation value G ( 2 ) ( 0 ) , and (d2) Detuning dependence of the intensity-difference squeezing at 1.5 MHz . (f1-f4) The theoretical simulation results of dressed correlation function in accordance with (b1-b4) and (f5-f8) theoretical simulated squeezing in accordance with (c1-c4).
Fig. 3
Fig. 3 (a) Spectrum intensity of signals: (a1) Stokes SP-FWM signal and (a2) fluorescence signal in V-type level system; (b1-b7) Intensity Noise correlation function G ( 2 ) ( τ ) of Stokes and anti-Stokes versus delayed time τ, by setting Δ1 to be −200GHz, −170GHz, −92GHz, 0GHz, 92GHz, 170GHz and 200 GHz, respectively; (c1-c7) Intensity-difference squeezing versus analysis frequency ω in accordance with (b1-b7), respectively; (d1) Detuning dependence of the correlation value G ( 2 ) ( 0 ) , and (d2) detuning dependence of the value of Sq at 1.5 MHz.
Fig. 4
Fig. 4 (a) The measured signals versus Δ1 at different P3 power in Λ-type level system: (a1) Spectrum intensity of Stokes SP-FWM signal, and (a2) intensity of fluorescence. (b1-b5) Intensity noise correlation functions G ( 2 ) ( τ ) between Stokes and anti-Stokes signals with fixing Δ1 = Δ3 = 0 and setting P3 power from 1, 2, 3, 4 to 5 mW, respectively. (c1-c5) The calculated intensity-difference squeezing with the same experimental parameters in accordance with (b1-b5), respectively. (d1) The power dependence of correlation value G ( 2 ) ( 0 ) at τ = 0 . (d2) The power dependence of intensity-difference squeezing at 1.5 MHz. (e1) Decay rate calculated from ГS2 and ГaS2 in time domain and (e2) Calculated correlation time from (b).
Fig. 5
Fig. 5 (a) The measured signals versus Δ1 at different P2 power in V-type level system: (a1) Spectrum intensity of Stokes SP-FWM signal, and (a2) intensity of fluorescence. (b1-b5) Intensity noise correlation between Stokes and anti-Stokes signals with fixing Δ1 = Δ2 = 0 and setting P2 power from 1, 2, 3, 4 to 5 mW, respectively. (c1-c5) The calculated intensity-difference squeezing with the same experimental parameters in accordance with (b1-b5), respectively. (d1) The power dependence of correlation with τ = 0 in accordance with (b). (d2) The power dependence of intensity-difference squeezing at 1.5 MHz. (e1) Decay rate calculated from ГS2 and ГaS2 in time domain and (d2) calculated correlation time from (b).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ρ 1 3 S 2 ( 3 ) = - i G 3 G a S 2 * G 1 ( ( Γ 1 3 + i Δ 3 ) { Γ 13 + i Δ 1 + | G 3 | 2 / [ Γ 1 3 + i ( Δ 1 - Δ 3 ) ] } ( Γ 0 3 + | G 1 | 2 / [ Γ 1 3 + i Δ 1 ] ) )
ρ 1 0 a S 2 ( 3 ) = - i G 1 G S 2 * G 3 ( ( Γ 1 0 + i Δ 1 ) { Γ 1 0 + i Δ 3 + | G 1 | 2 / [ Γ 13 i ( Δ 1 - Δ 3 ) ] } ( Γ 3 0 + | G 3 | 2 / [ Γ 1 0 + i Δ 3 ] ) )
ρ 1 0 S 1 ( 3 ) = - i G a S 1 * G 1 G 2 ( ( Γ 2 0 + i Δ 2 ) { Γ 0 0 + i ( Δ 2 - Δ 1 ) + | G 2 | 2 / [ Γ 2 0 + i ( Δ 2 Δ 1 ) + | G 1 | 2 / ( Γ 0 1 i Δ 1 ) ] } ( Γ 10 + i Δ 1 + | G 1 | 2 / Γ 1 1 ) )
ρ 2 0 a S 1 ( 3 ) = - i G 1 G S 1 * G 2 ( ( Γ 1 0 + i Δ 1 ) { Γ 0 0 + i ( Δ 1 - Δ 2 ) + | G 2 | 2 / [ Γ 2 0 + | G 1 | 2 / ( Γ 2 1 - i Δ 1 ) ] } ( Γ 2 0 + i Δ 2 + | G 1 | 2 / Γ 2 2 )
κ S / a S = | ( - i ω S / a S / 2 c ) χ S / a S ( 3 ) E 1 E j |
N ^ S = a ^ S + ( L ) a ^ S ( L ) = Q a ^ S + ( 0 ) a ^ S ( 0 ) + ( Q 1 ) a ^ a S ( 0 ) a ^ a S + ( 0 ) + Q ( Q 1 ) a ^ S + ( 0 ) a ^ a S + ( 0 ) + Q ( Q 1 ) a ^ a S ( 0 ) a ^ S ( 0 )
N ^ a S = a ^ a S + ( L ) a ^ a S ( L ) = Q a ^ a S + ( 0 ) a ^ a S ( 0 ) + ( Q 1 ) a ^ S ( 0 ) a ^ S + ( 0 ) + Q ( Q 1 ) a ^ a S + ( 0 ) a ^ S + ( 0 ) + Q ( Q 1 ) a ^ S ( 0 ) a ^ a S ( 0 )
G ( 2 ) S - a S ( τ ) = ( δ I ^ S ( t S ) ) ( δ I ^ a S ( t a S ) ) / ( δ I ^ S ( t S ) ) 2 ( δ I ^ a S ( t a S ) ) 2
G a S - S ( 2 ) ( τ ) = A / B C D E
S q = L o g 1 0 [ δ 2 ( I ^ S - I ^ a S ) / δ 2 ( I ^ S + I ^ a S ) ] = L o g 1 0 [ δ 2 ( N ^ S - N ^ a S ) / δ 2 ( N ^ S + N ^ a S ) ]
I ( t ) = N S / a S e - Γ S / a S t

Metrics