Abstract

Recently, it has been greatly appreciated that intense light matter interaction is modified due to the nano- and microstructures in the target by – surface plasmons, laser energy localization scattering etc. Extreme laser intensities produce dense plasmas and collective mechanisms generate energetic electrons, ions and hard x-rays. Recently, it is postulated that the anharmonic electron motion, driven by ultrashort, high-intensity laser pulses, provides a universal mechanism for the laser absorption. Here, we provide the first demonstration of anharmonic-resonance-aided high laser-absorption in a biological system. At intensities of ∼ 1016–18 W/cm2, 40fs pulses excite a plasma formed with E. coli bacteria. The density-inhomogeneities due to the micro- and nanostructures in the bacterial target increase anharmonic resonance (AHR) heating and result in a 104-fold enhancement in the hard x-ray yield compared to plain solid targets. These observations lead to novel high-energy x-ray sources that have implications to lithography, imaging and medical applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A bright point source of ultrashort hard x-ray pulses using biological cells

M. Krishnamurthy, Sudipta Mondal, Amit D. Lad, Kartik Bane, Saima Ahmed, V. Narayanan, R. Rajeev, Gourab Chatterjee, Prashant Kumar Singh, G. Ravindra Kumar, M. Kundu, and Krishanu Ray
Opt. Express 20(5) 5754-5761 (2012)

Kilohertz sources of hard x rays and fast ions with femtosecond laser plasmas

A. Thoss, M. Richardson, G. Korn, M. Faubel, H. Stiel, U. Vogt, and T. Elsaesser
J. Opt. Soc. Am. B 20(1) 224-228 (2003)

Preliminary Measurements of X-Ray and Neutron Emission from Laser-Produced Plasmas

S. W. Mead, R. E. Kidder, J. E. Swain, F. Ranier, and J. Petruzzi
Appl. Opt. 11(2) 345-352 (1972)

References

  • View by:
  • |
  • |
  • |

  1. M. Weik, R. B. G. Ravelli, G. Kryger, S. McSweeney, M. L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, and J. L. Sussman, “Specific chemical and structural damage to proteins produced by synchrotron radiation,” Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).
    [Crossref] [PubMed]
  2. J. Miao, K. O. Hodgson, T. Ishikawa, C. A. Larabel, M. A. LeGros, and Y. Nishino, “Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction,” Proc. Natl. Acad. Sci. USA 100, 110–112 (2003).
    [Crossref] [PubMed]
  3. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, 1999).
    [Crossref]
  4. M. M. Murnane, H. C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast x-ray pulses from laser-produced plasmas,” Science 251, 531–536 (1991).
    [Crossref] [PubMed]
  5. Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278661–664 (1997).
    [Crossref]
  6. J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433, 596 (2005).
    [Crossref] [PubMed]
  7. P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College Press, 2005).
  8. P. Mulser and D. Bauer, High Power Laser-Matter Interaction (Springer Tracts in Modern Physics, 2010), Vol. 238.
    [Crossref]
  9. T. P. Coffey, “Breaking of large amplitude plasma oscillations,” Phys. Fluids 141402–1406 (1971).
    [Crossref]
  10. P. Mulser and M. Kanapathipillai, “Collisionless absorption in clusters out of linear resonance,” Phys. Rev. A 71, 63201 (2005).
    [Crossref]
  11. M. Kundu and D. Bauer, “Nonlinear resonance absorption in the laser-cluster interaction,” Phys. Rev. Lett. 96, 123401 (2006).
    [Crossref] [PubMed]
  12. M. Kundu and D. Bauer, “Collisionless energy absorption in the short-pulse intense laser-cluster interaction,” Phys. Rev. A 7463202 (2006).
    [Crossref]
  13. M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
    [Crossref] [PubMed]
  14. P. Mulser, D. Bauer, and H. Ruhl, “Collisionless laser-energy conversion by anharmonic resonance,” Phys. Rev. Lett. 101, 225002 (2008).
    [Crossref] [PubMed]
  15. M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
    [Crossref]
  16. P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. R. Kumar, “Metal nanoplasmas as bright sources of hard X-Ray pulses,” Phys. Rev. Lett. 90, 115002 (2003).
    [Crossref] [PubMed]
  17. M. Anand, A. S. Sandhu, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 181111 (2006).
    [Crossref]
  18. S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
    [Crossref]
  19. F. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447–457 (1997).
    [Crossref]
  20. K. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Iked, Y. Honda, and S. Okuda, “Calibration of imaging plate for high energy electron spectrometer,” Rep. Sci. Instrum. 76, 013507 (2005).
    [Crossref]
  21. G. Reshes, S. Vanounou, I. Fishov, and M. Feingold, “Cell shape dynamics in Escherichia coli,” Biophys J. 94251–264 (2008).
    [Crossref]
  22. M. D. Mullen, D. C. Wolf, F. G. Ferris, T. J. Beveridge, C. A. Flemming, and G. W. Bailey, “Bacterial sorption of heavy metals,” App. Env. Microbiol. 55, 3143–3149 (1989).
  23. Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvr, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2004).
    [Crossref]
  24. Y. Glinec, J. Faure, V. Malka, T. Fuch, H. Szymanowski, and U. Oelfke, “Radiotherapy with an existing electron beam produced by laser-plasma interaction,” Rad. And Onc. 76, S46 (2005).
    [Crossref]
  25. M. Al-Rabban, M. Richardson, H. Scott, F. Gilleron, M. Poirier, and T. Blenski, “EUV sources for lithography,” SPIE Press, 299–337 (2006).

2012 (1)

M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
[Crossref]

2008 (4)

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

P. Mulser, D. Bauer, and H. Ruhl, “Collisionless laser-energy conversion by anharmonic resonance,” Phys. Rev. Lett. 101, 225002 (2008).
[Crossref] [PubMed]

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

G. Reshes, S. Vanounou, I. Fishov, and M. Feingold, “Cell shape dynamics in Escherichia coli,” Biophys J. 94251–264 (2008).
[Crossref]

2006 (3)

M. Anand, A. S. Sandhu, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 181111 (2006).
[Crossref]

M. Kundu and D. Bauer, “Nonlinear resonance absorption in the laser-cluster interaction,” Phys. Rev. Lett. 96, 123401 (2006).
[Crossref] [PubMed]

M. Kundu and D. Bauer, “Collisionless energy absorption in the short-pulse intense laser-cluster interaction,” Phys. Rev. A 7463202 (2006).
[Crossref]

2005 (4)

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433, 596 (2005).
[Crossref] [PubMed]

P. Mulser and M. Kanapathipillai, “Collisionless absorption in clusters out of linear resonance,” Phys. Rev. A 71, 63201 (2005).
[Crossref]

K. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Iked, Y. Honda, and S. Okuda, “Calibration of imaging plate for high energy electron spectrometer,” Rep. Sci. Instrum. 76, 013507 (2005).
[Crossref]

Y. Glinec, J. Faure, V. Malka, T. Fuch, H. Szymanowski, and U. Oelfke, “Radiotherapy with an existing electron beam produced by laser-plasma interaction,” Rad. And Onc. 76, S46 (2005).
[Crossref]

2004 (1)

Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvr, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2004).
[Crossref]

2003 (2)

P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. R. Kumar, “Metal nanoplasmas as bright sources of hard X-Ray pulses,” Phys. Rev. Lett. 90, 115002 (2003).
[Crossref] [PubMed]

J. Miao, K. O. Hodgson, T. Ishikawa, C. A. Larabel, M. A. LeGros, and Y. Nishino, “Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction,” Proc. Natl. Acad. Sci. USA 100, 110–112 (2003).
[Crossref] [PubMed]

2000 (1)

M. Weik, R. B. G. Ravelli, G. Kryger, S. McSweeney, M. L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, and J. L. Sussman, “Specific chemical and structural damage to proteins produced by synchrotron radiation,” Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).
[Crossref] [PubMed]

1997 (2)

Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278661–664 (1997).
[Crossref]

F. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447–457 (1997).
[Crossref]

1991 (1)

M. M. Murnane, H. C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast x-ray pulses from laser-produced plasmas,” Science 251, 531–536 (1991).
[Crossref] [PubMed]

1989 (1)

M. D. Mullen, D. C. Wolf, F. G. Ferris, T. J. Beveridge, C. A. Flemming, and G. W. Bailey, “Bacterial sorption of heavy metals,” App. Env. Microbiol. 55, 3143–3149 (1989).

1971 (1)

T. P. Coffey, “Breaking of large amplitude plasma oscillations,” Phys. Fluids 141402–1406 (1971).
[Crossref]

Ahmed, S.

M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
[Crossref]

Al-Rabban, M.

M. Al-Rabban, M. Richardson, H. Scott, F. Gilleron, M. Poirier, and T. Blenski, “EUV sources for lithography,” SPIE Press, 299–337 (2006).

Anand, M.

M. Anand, A. S. Sandhu, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 181111 (2006).
[Crossref]

Attwood, D.

D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, 1999).
[Crossref]

Ayyub, P.

P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. R. Kumar, “Metal nanoplasmas as bright sources of hard X-Ray pulses,” Phys. Rev. Lett. 90, 115002 (2003).
[Crossref] [PubMed]

Bailey, G. W.

M. D. Mullen, D. C. Wolf, F. G. Ferris, T. J. Beveridge, C. A. Flemming, and G. W. Bailey, “Bacterial sorption of heavy metals,” App. Env. Microbiol. 55, 3143–3149 (1989).

Bane, K.

M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
[Crossref]

Bauer, D.

P. Mulser, D. Bauer, and H. Ruhl, “Collisionless laser-energy conversion by anharmonic resonance,” Phys. Rev. Lett. 101, 225002 (2008).
[Crossref] [PubMed]

M. Kundu and D. Bauer, “Nonlinear resonance absorption in the laser-cluster interaction,” Phys. Rev. Lett. 96, 123401 (2006).
[Crossref] [PubMed]

M. Kundu and D. Bauer, “Collisionless energy absorption in the short-pulse intense laser-cluster interaction,” Phys. Rev. A 7463202 (2006).
[Crossref]

P. Mulser and D. Bauer, High Power Laser-Matter Interaction (Springer Tracts in Modern Physics, 2010), Vol. 238.
[Crossref]

Beg, F.

F. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447–457 (1997).
[Crossref]

Bell, A. R.

F. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447–457 (1997).
[Crossref]

Beveridge, T. J.

M. D. Mullen, D. C. Wolf, F. G. Ferris, T. J. Beveridge, C. A. Flemming, and G. W. Bailey, “Bacterial sorption of heavy metals,” App. Env. Microbiol. 55, 3143–3149 (1989).

Blenski, T.

M. Al-Rabban, M. Richardson, H. Scott, F. Gilleron, M. Poirier, and T. Blenski, “EUV sources for lithography,” SPIE Press, 299–337 (2006).

Burgy, F.

Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvr, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2004).
[Crossref]

Burnett, N. H.

Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278661–664 (1997).
[Crossref]

Cerchez, M.

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

Chatterjee, G.

M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
[Crossref]

Coffey, T. P.

T. P. Coffey, “Breaking of large amplitude plasma oscillations,” Phys. Fluids 141402–1406 (1971).
[Crossref]

Dain, L. L.

Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvr, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2004).
[Crossref]

Dangor, A. E.

F. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447–457 (1997).
[Crossref]

Danson, C. N.

F. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447–457 (1997).
[Crossref]

Darbon, S.

Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvr, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2004).
[Crossref]

Das, A.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Falcone, R. W.

M. M. Murnane, H. C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast x-ray pulses from laser-produced plasmas,” Science 251, 531–536 (1991).
[Crossref] [PubMed]

Faure, J.

Y. Glinec, J. Faure, V. Malka, T. Fuch, H. Szymanowski, and U. Oelfke, “Radiotherapy with an existing electron beam produced by laser-plasma interaction,” Rad. And Onc. 76, S46 (2005).
[Crossref]

Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvr, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2004).
[Crossref]

Feingold, M.

G. Reshes, S. Vanounou, I. Fishov, and M. Feingold, “Cell shape dynamics in Escherichia coli,” Biophys J. 94251–264 (2008).
[Crossref]

Ferris, F. G.

M. D. Mullen, D. C. Wolf, F. G. Ferris, T. J. Beveridge, C. A. Flemming, and G. W. Bailey, “Bacterial sorption of heavy metals,” App. Env. Microbiol. 55, 3143–3149 (1989).

Fews, A. P.

F. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447–457 (1997).
[Crossref]

Fishov, I.

G. Reshes, S. Vanounou, I. Fishov, and M. Feingold, “Cell shape dynamics in Escherichia coli,” Biophys J. 94251–264 (2008).
[Crossref]

Flemming, C. A.

M. D. Mullen, D. C. Wolf, F. G. Ferris, T. J. Beveridge, C. A. Flemming, and G. W. Bailey, “Bacterial sorption of heavy metals,” App. Env. Microbiol. 55, 3143–3149 (1989).

Fuch, T.

Y. Glinec, J. Faure, V. Malka, T. Fuch, H. Szymanowski, and U. Oelfke, “Radiotherapy with an existing electron beam produced by laser-plasma interaction,” Rad. And Onc. 76, S46 (2005).
[Crossref]

Gibbon, P.

M. Anand, A. S. Sandhu, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 181111 (2006).
[Crossref]

P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College Press, 2005).

Gilleron, F.

M. Al-Rabban, M. Richardson, H. Scott, F. Gilleron, M. Poirier, and T. Blenski, “EUV sources for lithography,” SPIE Press, 299–337 (2006).

Glinec, Y.

Y. Glinec, J. Faure, V. Malka, T. Fuch, H. Szymanowski, and U. Oelfke, “Radiotherapy with an existing electron beam produced by laser-plasma interaction,” Rad. And Onc. 76, S46 (2005).
[Crossref]

Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvr, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2004).
[Crossref]

Glinsky, M. E.

F. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447–457 (1997).
[Crossref]

Gros, P.

M. Weik, R. B. G. Ravelli, G. Kryger, S. McSweeney, M. L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, and J. L. Sussman, “Specific chemical and structural damage to proteins produced by synchrotron radiation,” Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).
[Crossref] [PubMed]

Hammel, B. A.

F. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447–457 (1997).
[Crossref]

Harel, M.

M. Weik, R. B. G. Ravelli, G. Kryger, S. McSweeney, M. L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, and J. L. Sussman, “Specific chemical and structural damage to proteins produced by synchrotron radiation,” Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).
[Crossref] [PubMed]

Hodgson, K. O.

J. Miao, K. O. Hodgson, T. Ishikawa, C. A. Larabel, M. A. LeGros, and Y. Nishino, “Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction,” Proc. Natl. Acad. Sci. USA 100, 110–112 (2003).
[Crossref] [PubMed]

Honda, Y.

K. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Iked, Y. Honda, and S. Okuda, “Calibration of imaging plate for high energy electron spectrometer,” Rep. Sci. Instrum. 76, 013507 (2005).
[Crossref]

Hosokai, T.

Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvr, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2004).
[Crossref]

Iked, T.

K. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Iked, Y. Honda, and S. Okuda, “Calibration of imaging plate for high energy electron spectrometer,” Rep. Sci. Instrum. 76, 013507 (2005).
[Crossref]

Ishikawa, T.

J. Miao, K. O. Hodgson, T. Ishikawa, C. A. Larabel, M. A. LeGros, and Y. Nishino, “Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction,” Proc. Natl. Acad. Sci. USA 100, 110–112 (2003).
[Crossref] [PubMed]

Jung, R.

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

Kahaly, S.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

M. Anand, A. S. Sandhu, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 181111 (2006).
[Crossref]

Kan, C.

Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278661–664 (1997).
[Crossref]

Kanapathipillai, M.

P. Mulser and M. Kanapathipillai, “Collisionless absorption in clusters out of linear resonance,” Phys. Rev. A 71, 63201 (2005).
[Crossref]

Kapteyn, H. C.

M. M. Murnane, H. C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast x-ray pulses from laser-produced plasmas,” Science 251, 531–536 (1991).
[Crossref] [PubMed]

Kaw, P. K.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Kitagawa, Y.

K. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Iked, Y. Honda, and S. Okuda, “Calibration of imaging plate for high energy electron spectrometer,” Rep. Sci. Instrum. 76, 013507 (2005).
[Crossref]

Kodama, R.

K. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Iked, Y. Honda, and S. Okuda, “Calibration of imaging plate for high energy electron spectrometer,” Rep. Sci. Instrum. 76, 013507 (2005).
[Crossref]

Koppitsch, R.

Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278661–664 (1997).
[Crossref]

Krausz, F.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433, 596 (2005).
[Crossref] [PubMed]

Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278661–664 (1997).
[Crossref]

Krishnamurthy, M.

M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
[Crossref]

M. Anand, A. S. Sandhu, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 181111 (2006).
[Crossref]

Kroon, J.

M. Weik, R. B. G. Ravelli, G. Kryger, S. McSweeney, M. L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, and J. L. Sussman, “Specific chemical and structural damage to proteins produced by synchrotron radiation,” Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).
[Crossref] [PubMed]

Kryger, G.

M. Weik, R. B. G. Ravelli, G. Kryger, S. McSweeney, M. L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, and J. L. Sussman, “Specific chemical and structural damage to proteins produced by synchrotron radiation,” Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).
[Crossref] [PubMed]

Kumar, G. R.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. R. Kumar, “Metal nanoplasmas as bright sources of hard X-Ray pulses,” Phys. Rev. Lett. 90, 115002 (2003).
[Crossref] [PubMed]

Kundu, M.

M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
[Crossref]

M. Kundu and D. Bauer, “Nonlinear resonance absorption in the laser-cluster interaction,” Phys. Rev. Lett. 96, 123401 (2006).
[Crossref] [PubMed]

M. Kundu and D. Bauer, “Collisionless energy absorption in the short-pulse intense laser-cluster interaction,” Phys. Rev. A 7463202 (2006).
[Crossref]

Lad, A. D.

M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
[Crossref]

Larabel, C. A.

J. Miao, K. O. Hodgson, T. Ishikawa, C. A. Larabel, M. A. LeGros, and Y. Nishino, “Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction,” Proc. Natl. Acad. Sci. USA 100, 110–112 (2003).
[Crossref] [PubMed]

Lee, P.

F. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447–457 (1997).
[Crossref]

Lefebvr, E.

Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvr, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2004).
[Crossref]

LeGros, M. A.

J. Miao, K. O. Hodgson, T. Ishikawa, C. A. Larabel, M. A. LeGros, and Y. Nishino, “Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction,” Proc. Natl. Acad. Sci. USA 100, 110–112 (2003).
[Crossref] [PubMed]

Lenzner, M.

Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278661–664 (1997).
[Crossref]

Malka, V.

Y. Glinec, J. Faure, V. Malka, T. Fuch, H. Szymanowski, and U. Oelfke, “Radiotherapy with an existing electron beam produced by laser-plasma interaction,” Rad. And Onc. 76, S46 (2005).
[Crossref]

Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvr, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2004).
[Crossref]

McSweeney, S.

M. Weik, R. B. G. Ravelli, G. Kryger, S. McSweeney, M. L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, and J. L. Sussman, “Specific chemical and structural damage to proteins produced by synchrotron radiation,” Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).
[Crossref] [PubMed]

Mercier, B.

Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvr, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2004).
[Crossref]

Miao, J.

J. Miao, K. O. Hodgson, T. Ishikawa, C. A. Larabel, M. A. LeGros, and Y. Nishino, “Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction,” Proc. Natl. Acad. Sci. USA 100, 110–112 (2003).
[Crossref] [PubMed]

Mondal, S.

M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
[Crossref]

Mullen, M. D.

M. D. Mullen, D. C. Wolf, F. G. Ferris, T. J. Beveridge, C. A. Flemming, and G. W. Bailey, “Bacterial sorption of heavy metals,” App. Env. Microbiol. 55, 3143–3149 (1989).

Mulser, P.

P. Mulser, D. Bauer, and H. Ruhl, “Collisionless laser-energy conversion by anharmonic resonance,” Phys. Rev. Lett. 101, 225002 (2008).
[Crossref] [PubMed]

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

P. Mulser and M. Kanapathipillai, “Collisionless absorption in clusters out of linear resonance,” Phys. Rev. A 71, 63201 (2005).
[Crossref]

P. Mulser and D. Bauer, High Power Laser-Matter Interaction (Springer Tracts in Modern Physics, 2010), Vol. 238.
[Crossref]

Murnane, M. M.

M. M. Murnane, H. C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast x-ray pulses from laser-produced plasmas,” Science 251, 531–536 (1991).
[Crossref] [PubMed]

Narayanan, V.

M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
[Crossref]

Nishino, Y.

J. Miao, K. O. Hodgson, T. Ishikawa, C. A. Larabel, M. A. LeGros, and Y. Nishino, “Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction,” Proc. Natl. Acad. Sci. USA 100, 110–112 (2003).
[Crossref] [PubMed]

Norreys, P. A.

F. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447–457 (1997).
[Crossref]

Oelfke, U.

Y. Glinec, J. Faure, V. Malka, T. Fuch, H. Szymanowski, and U. Oelfke, “Radiotherapy with an existing electron beam produced by laser-plasma interaction,” Rad. And Onc. 76, S46 (2005).
[Crossref]

Okuda, S.

K. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Iked, Y. Honda, and S. Okuda, “Calibration of imaging plate for high energy electron spectrometer,” Rep. Sci. Instrum. 76, 013507 (2005).
[Crossref]

Osterholz, J.

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

Poirier, M.

M. Al-Rabban, M. Richardson, H. Scott, F. Gilleron, M. Poirier, and T. Blenski, “EUV sources for lithography,” SPIE Press, 299–337 (2006).

Rajeev, P. P.

P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. R. Kumar, “Metal nanoplasmas as bright sources of hard X-Ray pulses,” Phys. Rev. Lett. 90, 115002 (2003).
[Crossref] [PubMed]

Rajeev, R.

M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
[Crossref]

Ravelli, R. B. G.

M. Weik, R. B. G. Ravelli, G. Kryger, S. McSweeney, M. L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, and J. L. Sussman, “Specific chemical and structural damage to proteins produced by synchrotron radiation,” Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).
[Crossref] [PubMed]

Raves, M. L.

M. Weik, R. B. G. Ravelli, G. Kryger, S. McSweeney, M. L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, and J. L. Sussman, “Specific chemical and structural damage to proteins produced by synchrotron radiation,” Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).
[Crossref] [PubMed]

Ravindra Kumar, G.

M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
[Crossref]

M. Anand, A. S. Sandhu, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 181111 (2006).
[Crossref]

Ray, K.

M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
[Crossref]

Reshes, G.

G. Reshes, S. Vanounou, I. Fishov, and M. Feingold, “Cell shape dynamics in Escherichia coli,” Biophys J. 94251–264 (2008).
[Crossref]

Richardson, M.

M. Al-Rabban, M. Richardson, H. Scott, F. Gilleron, M. Poirier, and T. Blenski, “EUV sources for lithography,” SPIE Press, 299–337 (2006).

Rosen, M. D.

M. M. Murnane, H. C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast x-ray pulses from laser-produced plasmas,” Science 251, 531–536 (1991).
[Crossref] [PubMed]

Rousseau, J. P.

Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvr, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2004).
[Crossref]

Ruhl, H.

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

P. Mulser, D. Bauer, and H. Ruhl, “Collisionless laser-energy conversion by anharmonic resonance,” Phys. Rev. Lett. 101, 225002 (2008).
[Crossref] [PubMed]

Sandhu, A. S.

M. Anand, A. S. Sandhu, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 181111 (2006).
[Crossref]

P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. R. Kumar, “Metal nanoplasmas as bright sources of hard X-Ray pulses,” Phys. Rev. Lett. 90, 115002 (2003).
[Crossref] [PubMed]

Santos, J. J.

Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvr, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2004).
[Crossref]

Sartania, S.

Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278661–664 (1997).
[Crossref]

Sato, T.

K. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Iked, Y. Honda, and S. Okuda, “Calibration of imaging plate for high energy electron spectrometer,” Rep. Sci. Instrum. 76, 013507 (2005).
[Crossref]

Schnürer, M.

Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278661–664 (1997).
[Crossref]

Scott, H.

M. Al-Rabban, M. Richardson, H. Scott, F. Gilleron, M. Poirier, and T. Blenski, “EUV sources for lithography,” SPIE Press, 299–337 (2006).

Scrinzi, A.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433, 596 (2005).
[Crossref] [PubMed]

Sengupta, S.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Seres, E.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433, 596 (2005).
[Crossref] [PubMed]

Seres, J.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433, 596 (2005).
[Crossref] [PubMed]

Sheng, Z. M.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Silman, I.

M. Weik, R. B. G. Ravelli, G. Kryger, S. McSweeney, M. L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, and J. L. Sussman, “Specific chemical and structural damage to proteins produced by synchrotron radiation,” Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).
[Crossref] [PubMed]

Singh, P. K.

M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
[Crossref]

Spielmann, C.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433, 596 (2005).
[Crossref] [PubMed]

Spielmann, Ch.

Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278661–664 (1997).
[Crossref]

Streli, C.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433, 596 (2005).
[Crossref] [PubMed]

Sussman, J. L.

M. Weik, R. B. G. Ravelli, G. Kryger, S. McSweeney, M. L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, and J. L. Sussman, “Specific chemical and structural damage to proteins produced by synchrotron radiation,” Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).
[Crossref] [PubMed]

Szymanowski, H.

Y. Glinec, J. Faure, V. Malka, T. Fuch, H. Szymanowski, and U. Oelfke, “Radiotherapy with an existing electron beam produced by laser-plasma interaction,” Rad. And Onc. 76, S46 (2005).
[Crossref]

Takahashi, T.

K. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Iked, Y. Honda, and S. Okuda, “Calibration of imaging plate for high energy electron spectrometer,” Rep. Sci. Instrum. 76, 013507 (2005).
[Crossref]

Tanaka, K.

K. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Iked, Y. Honda, and S. Okuda, “Calibration of imaging plate for high energy electron spectrometer,” Rep. Sci. Instrum. 76, 013507 (2005).
[Crossref]

Taneja, P.

P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. R. Kumar, “Metal nanoplasmas as bright sources of hard X-Ray pulses,” Phys. Rev. Lett. 90, 115002 (2003).
[Crossref] [PubMed]

Tatarakis, M.

F. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447–457 (1997).
[Crossref]

Tempea, G.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433, 596 (2005).
[Crossref] [PubMed]

Toncian, T.

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

Vanounou, S.

G. Reshes, S. Vanounou, I. Fishov, and M. Feingold, “Cell shape dynamics in Escherichia coli,” Biophys J. 94251–264 (2008).
[Crossref]

Verhoef, A. J.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433, 596 (2005).
[Crossref] [PubMed]

Wang, W. M.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Weik, M.

M. Weik, R. B. G. Ravelli, G. Kryger, S. McSweeney, M. L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, and J. L. Sussman, “Specific chemical and structural damage to proteins produced by synchrotron radiation,” Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).
[Crossref] [PubMed]

Willi, O.

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

Wobrauschek, P.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433, 596 (2005).
[Crossref] [PubMed]

Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278661–664 (1997).
[Crossref]

Wolf, D. C.

M. D. Mullen, D. C. Wolf, F. G. Ferris, T. J. Beveridge, C. A. Flemming, and G. W. Bailey, “Bacterial sorption of heavy metals,” App. Env. Microbiol. 55, 3143–3149 (1989).

Yabuuchi, T.

K. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Iked, Y. Honda, and S. Okuda, “Calibration of imaging plate for high energy electron spectrometer,” Rep. Sci. Instrum. 76, 013507 (2005).
[Crossref]

Yadav, S. K.

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Yakovlev, V.

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433, 596 (2005).
[Crossref] [PubMed]

App. Env. Microbiol. (1)

M. D. Mullen, D. C. Wolf, F. G. Ferris, T. J. Beveridge, C. A. Flemming, and G. W. Bailey, “Bacterial sorption of heavy metals,” App. Env. Microbiol. 55, 3143–3149 (1989).

Appl. Phys. Lett. (1)

M. Anand, A. S. Sandhu, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Appl. Phys. Lett. 88, 181111 (2006).
[Crossref]

Biophys J. (1)

G. Reshes, S. Vanounou, I. Fishov, and M. Feingold, “Cell shape dynamics in Escherichia coli,” Biophys J. 94251–264 (2008).
[Crossref]

Nature (1)

J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Laser technology: source of coherent kiloelectronvolt X-rays,” Nature 433, 596 (2005).
[Crossref] [PubMed]

Opt. Exp. (1)

M. Krishnamurthy, S. Mondal, A. D. Lad, K. Bane, S. Ahmed, V. Narayanan, R. Rajeev, G. Chatterjee, P. K. Singh, G. Ravindra Kumar, M. Kundu, and K. Ray, 11A bright point source of ultrashort hard x-ray pulses using biological cells,” Opt. Exp. 20, 5754–5761 (2012).
[Crossref]

Phys. Fluids (1)

T. P. Coffey, “Breaking of large amplitude plasma oscillations,” Phys. Fluids 141402–1406 (1971).
[Crossref]

Phys. Plasmas (1)

F. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447–457 (1997).
[Crossref]

Phys. Rev. A (2)

M. Kundu and D. Bauer, “Collisionless energy absorption in the short-pulse intense laser-cluster interaction,” Phys. Rev. A 7463202 (2006).
[Crossref]

P. Mulser and M. Kanapathipillai, “Collisionless absorption in clusters out of linear resonance,” Phys. Rev. A 71, 63201 (2005).
[Crossref]

Phys. Rev. Lett. (6)

M. Kundu and D. Bauer, “Nonlinear resonance absorption in the laser-cluster interaction,” Phys. Rev. Lett. 96, 123401 (2006).
[Crossref] [PubMed]

M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, “Absorption of ultrashort laser pulses in strongly overdense targets,” Phys. Rev. Lett. 100, 245001 (2008).
[Crossref] [PubMed]

P. Mulser, D. Bauer, and H. Ruhl, “Collisionless laser-energy conversion by anharmonic resonance,” Phys. Rev. Lett. 101, 225002 (2008).
[Crossref] [PubMed]

P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu, and G. R. Kumar, “Metal nanoplasmas as bright sources of hard X-Ray pulses,” Phys. Rev. Lett. 90, 115002 (2003).
[Crossref] [PubMed]

S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P. K. Kaw, and G. R. Kumar, “Near-complete absorption of intense, ultrashort laser light by sub-λ gratings,” Phys. Rev. Lett. 101, 145001 (2008).
[Crossref]

Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvr, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2004).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

M. Weik, R. B. G. Ravelli, G. Kryger, S. McSweeney, M. L. Raves, M. Harel, P. Gros, I. Silman, J. Kroon, and J. L. Sussman, “Specific chemical and structural damage to proteins produced by synchrotron radiation,” Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).
[Crossref] [PubMed]

J. Miao, K. O. Hodgson, T. Ishikawa, C. A. Larabel, M. A. LeGros, and Y. Nishino, “Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction,” Proc. Natl. Acad. Sci. USA 100, 110–112 (2003).
[Crossref] [PubMed]

Rad. And Onc. (1)

Y. Glinec, J. Faure, V. Malka, T. Fuch, H. Szymanowski, and U. Oelfke, “Radiotherapy with an existing electron beam produced by laser-plasma interaction,” Rad. And Onc. 76, S46 (2005).
[Crossref]

Rep. Sci. Instrum. (1)

K. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Iked, Y. Honda, and S. Okuda, “Calibration of imaging plate for high energy electron spectrometer,” Rep. Sci. Instrum. 76, 013507 (2005).
[Crossref]

Science (2)

M. M. Murnane, H. C. Kapteyn, M. D. Rosen, and R. W. Falcone, “Ultrafast x-ray pulses from laser-produced plasmas,” Science 251, 531–536 (1991).
[Crossref] [PubMed]

Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278661–664 (1997).
[Crossref]

Other (4)

D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, 1999).
[Crossref]

P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College Press, 2005).

P. Mulser and D. Bauer, High Power Laser-Matter Interaction (Springer Tracts in Modern Physics, 2010), Vol. 238.
[Crossref]

M. Al-Rabban, M. Richardson, H. Scott, F. Gilleron, M. Poirier, and T. Blenski, “EUV sources for lithography,” SPIE Press, 299–337 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of the experimental as well as simulation setup. (b) Schematic of AHR for an electron in a potential well, with (blue) and without (green) a density modulation. The dashed line represents the condition Ω[r(t)]/ω = 1, where AHR occurs. The potential well with the density modulation is deeper due to a higher plasma frequency and the electron needs to make several excursions in order to meet the resonance criterion, as indicated by the classical electron trajectories. In other words, the electron is more localized in the deeper potential well, resulting in a higher degree of absorption of the laser energy.
Fig. 2
Fig. 2 (a) Experimentally measured hot electron spectra at an incident laser intensity of 3 × 1018 W/cm2 for an uncoated glass target and a bacteria-coated target, under otherwise identical conditions. The hot electron temperatures are indicated on the plot. The integrated hot electron yield for the bacteria-coated target is 67 times that for the uncoated plain glass target. The data were collected over 100 laser shots. The low-energy cutoff is 250 keV. The inset shows the electron traces on the image-plate in the electron spectrometer. (b) The results of 2D PIC simulations considering ellipsoidal particles (simulating bacterial cells) of size 0.7 μm × 1.8 μm, placed on a plain solid substrate at an incident laser intensity of 1018 W/cm2. The low-energy energy is 250 keV, as in the experiment.
Fig. 3
Fig. 3 Temporal dynamics of an electron sphere (of total charge qs = Ne, number of electrons N = 80000, and radius R = 10 nm) experiencing AHR when driven by a n = 10-cycle linearly polarized (in x) laser pulse E(t) = E0 sin2(ωt/2n) cos(ωt) for 0 < t < nT of intensity I0 ≈ 9.1 × 1016 W/cm2 and wavelength 800 nm. The normalized excursion x/R, velocity vx/c, and the normalized frequency Ω[r(t)]/ω (in a) and the corresponding normalized absorbed energy per electron εabs/N/Up (in b) are plotted (see text).
Fig. 4
Fig. 4 Temporal dynamics of two electron spheres of same size R = 10 nm with different number of electrons (and ions) N = 80000, 160000 (i.e., different plasma densities np = 10.95nc, 21.9nc, and ωM ≈ 1.92, 2.7) driven by 10-cycle laser pulse as in Fig. 3 at an intensity I0 ≈ 1.82 × 1017 W/cm2. Pannels (a,b) show low density case and (c,d) depict high density case. The normalized excursion x/R, velocity vx/c, and the normalized frequency Ω[r(t)]/ω and the corresponding normalized absorbed energy per particle εabs/N/Up are plotted as in Fig. 3. At t/T = 0, both spheres are bound in the potential where their x(0) = 0, vx(0) = 0. Both the spheres undergo AHR two times (see text).
Fig. 5
Fig. 5 Temporal dynamics of two electrons experiencing AHR at an incident laser intensity of 1018 W/cm2. The velocity (vx, vy), the space-charge fields ( E x sc, E y sc), the driving field Ex and the normalized frequency Ω[r(t)]/ω are plotted with respect to the normalized time t/T, where ω is the laser frequency and T = 2π/ω is the laser cycle. The laser is incident at t/T ≈ 5.8 and creates the space-charge fields. The electron might leave the target either along (a) vy < 0 or (b) vy > 0, where y is the direction of laser propagation. This results in a Doppler (a) blue-shift or (b) red-shift in the frequency of the driving field Ex, as shown by the (a) contraction or (b) dilation of the time-cycle of the driving field Ex. AHR occurs when Ω/ω ≈ 1 around t/T ≈ 6.25 – 6.50.
Fig. 6
Fig. 6 Temporal evolution of absorbed energies εabs for two PIC electrons shown in Fig. 5.
Fig. 7
Fig. 7 (a) A transmission-electron-microscope (TEM) image of the E. coli bacteria doped with AgCl nanoparticles, (22 ± 6) nm in size. (b) X-ray bremsstrahlung spectra at an incident laser intensity of 5 × 1016 W/cm2 from a Ag-doped bacterial target as compared to an undoped bacterial target (enhanced by a factor of 10 for representation on the same scale). The hot electron temperature for the Ag-doped bacterial target is (250 ± 10) keV, compared to (57 ± 2) keV for the undoped bacterial target [15]. The integrated x-ray yield from the Ag-doped bacterial target is a factor of 85 higher than that from the undoped bacterial target. The data were acquired for over 10,000 laser shots. The low-energy cutoff in the experiment is 30 keV.
Fig. 8
Fig. 8 Results of 2D PIC simulations for an incident laser intensity of 1016 W/cm2, showing the hot electron spectra for several nanoparticles on the ellipsoid, representing the Ag-doped bacteria. The low-energy cutoff is 30 keV.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g ( r ) = ω M 2 { r + α r 2 + β r 4 0 r 2 R 1 / r 2 r 2 R .

Metrics