Abstract

We experimentally demonstrate polarization bistability in a dual-wavelength Nd:YVO4 laser at 1064 nm (4F3/24I11/2) and 1342 nm (4F3/24I13/2) by using an intra-cavity electro-optic periodically poled lithium niobate (PPLN) Bragg modulator to control the loss at 1064 nm. An inverse hysteresis switch was observed between 1064 nm and 1342 nm lasers with orthogonal polarizations by increasing and reducing the loss induced by the PPLN. The size of the hysteresis increased with increasing pump power. This paper provides an explanation based on cross-gain saturation for this bistable behavior of polarization.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  2. L. Lugiato, P. Mandel, S. Dembinski, and A. Kossakowski, “Semiclassical and quantum theories of bistability in lasers containing saturable absorbers,” Phys. Rev. A 18(1), 238–254 (1978).
    [Crossref]
  3. S. Ruschin and S. H. Bauer, “Bistability, hysteresis and critical behavior of a CO2 Laser, with SF6 intracavity as a saturable absorber,” Chem. Phys. Lett. 66(1), 100–103 (1979).
    [Crossref]
  4. K. H. Levin and C. L. Tang, “Optical switching and bistability in tunable lasers,” Appl. Phys. Lett. 34(6), 376–378 (1979).
    [Crossref]
  5. H. Kawaguchi, “Bistable laser diodes and their applications: state of the art,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1254–1270 (1997).
    [Crossref]
  6. C. S. Lee and H. Osada, “Observation of optical bistability due to resonator configuration transition,” Opt. Lett. 10(5), 232–234 (1985).
    [Crossref] [PubMed]
  7. J. Liu, H. Zhang, X. Mateos, W. Han, and V. Petrov, “Bistable laser operation of a Yb0.0054:Y0.3481Gd0.6465VO4 mixed crystal,” Opt. Lett. 33(16), 1810–1812 (2008).
    [Crossref] [PubMed]
  8. J. Liu, V. Petrov, U. Griebner, F. Noack, H. Zhang, J. Wang, and M. Jiang, “Optical bistability in the operation of a continuous-wave diode-pumped Yb:LuVO4 laser,” Opt. Express 14(25), 12183–12187 (2006).
    [Crossref] [PubMed]
  9. X. Zhang and Y. Wang, “Optical bistability effects in a Tm,Ho:YLF laser at room temperature,” Opt. Lett. 32(16), 2333–2335 (2007).
    [Crossref] [PubMed]
  10. H. Yu, Z. Wang, H. Zhang, J. Wang, S. Zhuang, and X. Xu, “Optical bistability of a neodymium-doped microchip laser with intracavity saturable absorber,” Appl. Phys. Express 4(10), 102701 (2011).
    [Crossref]
  11. Y. C. Chen and J. M. Liu, “Switching mechanism in polarization-bistable semiconductor lasers,” Opt. Quantum Electron. 19(S1), S93–S102 (1987).
    [Crossref]
  12. H. Kawaguchi, “Polarization bistable laser diodes,” J. Nonlinear Opt. Phys. Mater. 2(03), 367–389 (1993).
    [Crossref]
  13. G. S. Buller, R. J. Campbell, and A. C. Walker, “Polarization bistability and high contrast switching in an isotropic nonlinear cavity,” Opt. Commun. 75(1), 93–100 (1990).
    [Crossref]
  14. M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70(16), 2070–2072 (1997).
    [Crossref]
  15. P. Langot, M. Vallet, M. Brunel, G. Ropars, F. Bretenaker, A. Le Floch, and K. D. Choquette, “Direct monitoring of the coupling constant in vectorial lasers,” Opt. Commun. 148(4-6), 270–274 (1998).
    [Crossref]
  16. V. Pal, P. Trofimoff, B.-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Express 18(5), 5008–5014 (2010).
    [Crossref] [PubMed]
  17. B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
    [Crossref]
  18. J.-L. Li, M. Musha, A. Shirakawa, K.-I. Ueda, and L.-X. Zhong, “Dual-wavelength-switching operation based on optical bistability in pump-bypassed ytterbium-doped fiber laser,” Appl. Phys. B 85(4), 545–548 (2006).
    [Crossref]
  19. Y. Y. Lin, S. T. Lin, G. W. Chang, A. C. Chiang, Y. C. Huang, and Y. H. Chen, “Electro-optic periodically poled lithium niobate Bragg modulator as a laser Q-switch,” Opt. Lett. 32(5), 545–547 (2007).
    [Crossref] [PubMed]
  20. C.-C. Hsu, S.-S. Wu, C.-C. Chou, and M.-D. Wei, “Continuous-wave simultaneous dual-wavelength and power-ratio-tunable operation at 1064 and 1342 nm in an Nd:LuVO4 laser,” Laser Phys. 21(11), 1871–1875 (2011).
    [Crossref]
  21. A. Siegman, Lasers (University Science, 1986).
  22. M. Sargent III, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).
  23. M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, “Existence of two coupling constants in microchip lasers,” Opt. Lett. 25(12), 896–898 (2000).
    [Crossref] [PubMed]
  24. S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79(6), 063814 (2009).
    [Crossref]
  25. J.-Y. Ko, C.-C. Lin, K. Otsuka, Y. Miyasaka, K. Kamikariya, K. Nemoto, M.-C. Ho, and I.-M. Jiang, “Experimental observations of dual-olarization oscillations in laser-diode-pumped wide-aperture thin-slice Nd:GdVO4 lasers,” Opt. Express 15(3), 945–954 (2007).
    [Crossref] [PubMed]

2011 (2)

H. Yu, Z. Wang, H. Zhang, J. Wang, S. Zhuang, and X. Xu, “Optical bistability of a neodymium-doped microchip laser with intracavity saturable absorber,” Appl. Phys. Express 4(10), 102701 (2011).
[Crossref]

C.-C. Hsu, S.-S. Wu, C.-C. Chou, and M.-D. Wei, “Continuous-wave simultaneous dual-wavelength and power-ratio-tunable operation at 1064 and 1342 nm in an Nd:LuVO4 laser,” Laser Phys. 21(11), 1871–1875 (2011).
[Crossref]

2010 (2)

2009 (1)

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79(6), 063814 (2009).
[Crossref]

2008 (1)

2007 (3)

2006 (2)

J. Liu, V. Petrov, U. Griebner, F. Noack, H. Zhang, J. Wang, and M. Jiang, “Optical bistability in the operation of a continuous-wave diode-pumped Yb:LuVO4 laser,” Opt. Express 14(25), 12183–12187 (2006).
[Crossref] [PubMed]

J.-L. Li, M. Musha, A. Shirakawa, K.-I. Ueda, and L.-X. Zhong, “Dual-wavelength-switching operation based on optical bistability in pump-bypassed ytterbium-doped fiber laser,” Appl. Phys. B 85(4), 545–548 (2006).
[Crossref]

2000 (1)

1998 (1)

P. Langot, M. Vallet, M. Brunel, G. Ropars, F. Bretenaker, A. Le Floch, and K. D. Choquette, “Direct monitoring of the coupling constant in vectorial lasers,” Opt. Commun. 148(4-6), 270–274 (1998).
[Crossref]

1997 (2)

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70(16), 2070–2072 (1997).
[Crossref]

H. Kawaguchi, “Bistable laser diodes and their applications: state of the art,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1254–1270 (1997).
[Crossref]

1993 (1)

H. Kawaguchi, “Polarization bistable laser diodes,” J. Nonlinear Opt. Phys. Mater. 2(03), 367–389 (1993).
[Crossref]

1990 (1)

G. S. Buller, R. J. Campbell, and A. C. Walker, “Polarization bistability and high contrast switching in an isotropic nonlinear cavity,” Opt. Commun. 75(1), 93–100 (1990).
[Crossref]

1987 (1)

Y. C. Chen and J. M. Liu, “Switching mechanism in polarization-bistable semiconductor lasers,” Opt. Quantum Electron. 19(S1), S93–S102 (1987).
[Crossref]

1985 (1)

1979 (2)

S. Ruschin and S. H. Bauer, “Bistability, hysteresis and critical behavior of a CO2 Laser, with SF6 intracavity as a saturable absorber,” Chem. Phys. Lett. 66(1), 100–103 (1979).
[Crossref]

K. H. Levin and C. L. Tang, “Optical switching and bistability in tunable lasers,” Appl. Phys. Lett. 34(6), 376–378 (1979).
[Crossref]

1978 (1)

L. Lugiato, P. Mandel, S. Dembinski, and A. Kossakowski, “Semiclassical and quantum theories of bistability in lasers containing saturable absorbers,” Phys. Rev. A 18(1), 238–254 (1978).
[Crossref]

Alouini, M.

Baili, G.

Bauer, S. H.

S. Ruschin and S. H. Bauer, “Bistability, hysteresis and critical behavior of a CO2 Laser, with SF6 intracavity as a saturable absorber,” Chem. Phys. Lett. 66(1), 100–103 (1979).
[Crossref]

Bretenaker, F.

V. Pal, P. Trofimoff, B.-X. Miranda, G. Baili, M. Alouini, L. Morvan, D. Dolfi, F. Goldfarb, I. Sagnes, R. Ghosh, and F. Bretenaker, “Measurement of the coupling constant in a two-frequency VECSEL,” Opt. Express 18(5), 5008–5014 (2010).
[Crossref] [PubMed]

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79(6), 063814 (2009).
[Crossref]

M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, “Existence of two coupling constants in microchip lasers,” Opt. Lett. 25(12), 896–898 (2000).
[Crossref] [PubMed]

P. Langot, M. Vallet, M. Brunel, G. Ropars, F. Bretenaker, A. Le Floch, and K. D. Choquette, “Direct monitoring of the coupling constant in vectorial lasers,” Opt. Commun. 148(4-6), 270–274 (1998).
[Crossref]

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70(16), 2070–2072 (1997).
[Crossref]

Brunel, M.

M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, “Existence of two coupling constants in microchip lasers,” Opt. Lett. 25(12), 896–898 (2000).
[Crossref] [PubMed]

P. Langot, M. Vallet, M. Brunel, G. Ropars, F. Bretenaker, A. Le Floch, and K. D. Choquette, “Direct monitoring of the coupling constant in vectorial lasers,” Opt. Commun. 148(4-6), 270–274 (1998).
[Crossref]

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70(16), 2070–2072 (1997).
[Crossref]

Buller, G. S.

G. S. Buller, R. J. Campbell, and A. C. Walker, “Polarization bistability and high contrast switching in an isotropic nonlinear cavity,” Opt. Commun. 75(1), 93–100 (1990).
[Crossref]

Campbell, R. J.

G. S. Buller, R. J. Campbell, and A. C. Walker, “Polarization bistability and high contrast switching in an isotropic nonlinear cavity,” Opt. Commun. 75(1), 93–100 (1990).
[Crossref]

Chang, G. W.

Chen, Y. C.

Y. C. Chen and J. M. Liu, “Switching mechanism in polarization-bistable semiconductor lasers,” Opt. Quantum Electron. 19(S1), S93–S102 (1987).
[Crossref]

Chen, Y. H.

Chiang, A. C.

Choquette, K. D.

P. Langot, M. Vallet, M. Brunel, G. Ropars, F. Bretenaker, A. Le Floch, and K. D. Choquette, “Direct monitoring of the coupling constant in vectorial lasers,” Opt. Commun. 148(4-6), 270–274 (1998).
[Crossref]

Chou, C.-C.

C.-C. Hsu, S.-S. Wu, C.-C. Chou, and M.-D. Wei, “Continuous-wave simultaneous dual-wavelength and power-ratio-tunable operation at 1064 and 1342 nm in an Nd:LuVO4 laser,” Laser Phys. 21(11), 1871–1875 (2011).
[Crossref]

Dembinski, S.

L. Lugiato, P. Mandel, S. Dembinski, and A. Kossakowski, “Semiclassical and quantum theories of bistability in lasers containing saturable absorbers,” Phys. Rev. A 18(1), 238–254 (1978).
[Crossref]

Dolfi, D.

Feugnet, G.

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79(6), 063814 (2009).
[Crossref]

Ghosh, R.

Goldfarb, F.

Griebner, U.

Han, W.

Ho, M.-C.

Hsu, C.-C.

C.-C. Hsu, S.-S. Wu, C.-C. Chou, and M.-D. Wei, “Continuous-wave simultaneous dual-wavelength and power-ratio-tunable operation at 1064 and 1342 nm in an Nd:LuVO4 laser,” Laser Phys. 21(11), 1871–1875 (2011).
[Crossref]

Huang, Y. C.

Jiang, I.-M.

Jiang, M.

Kamikariya, K.

Kawaguchi, H.

H. Kawaguchi, “Bistable laser diodes and their applications: state of the art,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1254–1270 (1997).
[Crossref]

H. Kawaguchi, “Polarization bistable laser diodes,” J. Nonlinear Opt. Phys. Mater. 2(03), 367–389 (1993).
[Crossref]

Ko, J.-Y.

Kossakowski, A.

L. Lugiato, P. Mandel, S. Dembinski, and A. Kossakowski, “Semiclassical and quantum theories of bistability in lasers containing saturable absorbers,” Phys. Rev. A 18(1), 238–254 (1978).
[Crossref]

Langot, P.

P. Langot, M. Vallet, M. Brunel, G. Ropars, F. Bretenaker, A. Le Floch, and K. D. Choquette, “Direct monitoring of the coupling constant in vectorial lasers,” Opt. Commun. 148(4-6), 270–274 (1998).
[Crossref]

Le Floch, A.

M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, “Existence of two coupling constants in microchip lasers,” Opt. Lett. 25(12), 896–898 (2000).
[Crossref] [PubMed]

P. Langot, M. Vallet, M. Brunel, G. Ropars, F. Bretenaker, A. Le Floch, and K. D. Choquette, “Direct monitoring of the coupling constant in vectorial lasers,” Opt. Commun. 148(4-6), 270–274 (1998).
[Crossref]

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70(16), 2070–2072 (1997).
[Crossref]

Lee, C. S.

Levin, K. H.

K. H. Levin and C. L. Tang, “Optical switching and bistability in tunable lasers,” Appl. Phys. Lett. 34(6), 376–378 (1979).
[Crossref]

Li, J.-L.

J.-L. Li, M. Musha, A. Shirakawa, K.-I. Ueda, and L.-X. Zhong, “Dual-wavelength-switching operation based on optical bistability in pump-bypassed ytterbium-doped fiber laser,” Appl. Phys. B 85(4), 545–548 (2006).
[Crossref]

Lin, C.-C.

Lin, S. T.

Lin, Y. Y.

Liu, J.

Liu, J. M.

Y. C. Chen and J. M. Liu, “Switching mechanism in polarization-bistable semiconductor lasers,” Opt. Quantum Electron. 19(S1), S93–S102 (1987).
[Crossref]

Lugiato, L.

L. Lugiato, P. Mandel, S. Dembinski, and A. Kossakowski, “Semiclassical and quantum theories of bistability in lasers containing saturable absorbers,” Phys. Rev. A 18(1), 238–254 (1978).
[Crossref]

Mandel, P.

L. Lugiato, P. Mandel, S. Dembinski, and A. Kossakowski, “Semiclassical and quantum theories of bistability in lasers containing saturable absorbers,” Phys. Rev. A 18(1), 238–254 (1978).
[Crossref]

Mateos, X.

Miranda, B.-X.

Miyasaka, Y.

Morvan, L.

Musha, M.

J.-L. Li, M. Musha, A. Shirakawa, K.-I. Ueda, and L.-X. Zhong, “Dual-wavelength-switching operation based on optical bistability in pump-bypassed ytterbium-doped fiber laser,” Appl. Phys. B 85(4), 545–548 (2006).
[Crossref]

Nemoto, K.

Noack, F.

Osada, H.

Otsuka, K.

Pal, V.

Petrov, V.

Pocholle, J. P.

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79(6), 063814 (2009).
[Crossref]

Rebut, M.

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79(6), 063814 (2009).
[Crossref]

Ropars, G.

P. Langot, M. Vallet, M. Brunel, G. Ropars, F. Bretenaker, A. Le Floch, and K. D. Choquette, “Direct monitoring of the coupling constant in vectorial lasers,” Opt. Commun. 148(4-6), 270–274 (1998).
[Crossref]

Ruschin, S.

S. Ruschin and S. H. Bauer, “Bistability, hysteresis and critical behavior of a CO2 Laser, with SF6 intracavity as a saturable absorber,” Chem. Phys. Lett. 66(1), 100–103 (1979).
[Crossref]

Sagnes, I.

Schwartz, S.

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79(6), 063814 (2009).
[Crossref]

Shirakawa, A.

J.-L. Li, M. Musha, A. Shirakawa, K.-I. Ueda, and L.-X. Zhong, “Dual-wavelength-switching operation based on optical bistability in pump-bypassed ytterbium-doped fiber laser,” Appl. Phys. B 85(4), 545–548 (2006).
[Crossref]

Tang, C. L.

K. H. Levin and C. L. Tang, “Optical switching and bistability in tunable lasers,” Appl. Phys. Lett. 34(6), 376–378 (1979).
[Crossref]

Thony, P.

Trofimoff, P.

Ueda, K.-I.

J.-L. Li, M. Musha, A. Shirakawa, K.-I. Ueda, and L.-X. Zhong, “Dual-wavelength-switching operation based on optical bistability in pump-bypassed ytterbium-doped fiber laser,” Appl. Phys. B 85(4), 545–548 (2006).
[Crossref]

Vallet, M.

M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, “Existence of two coupling constants in microchip lasers,” Opt. Lett. 25(12), 896–898 (2000).
[Crossref] [PubMed]

P. Langot, M. Vallet, M. Brunel, G. Ropars, F. Bretenaker, A. Le Floch, and K. D. Choquette, “Direct monitoring of the coupling constant in vectorial lasers,” Opt. Commun. 148(4-6), 270–274 (1998).
[Crossref]

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70(16), 2070–2072 (1997).
[Crossref]

Walker, A. C.

G. S. Buller, R. J. Campbell, and A. C. Walker, “Polarization bistability and high contrast switching in an isotropic nonlinear cavity,” Opt. Commun. 75(1), 93–100 (1990).
[Crossref]

Walsh, B. M.

B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
[Crossref]

Wang, J.

H. Yu, Z. Wang, H. Zhang, J. Wang, S. Zhuang, and X. Xu, “Optical bistability of a neodymium-doped microchip laser with intracavity saturable absorber,” Appl. Phys. Express 4(10), 102701 (2011).
[Crossref]

J. Liu, V. Petrov, U. Griebner, F. Noack, H. Zhang, J. Wang, and M. Jiang, “Optical bistability in the operation of a continuous-wave diode-pumped Yb:LuVO4 laser,” Opt. Express 14(25), 12183–12187 (2006).
[Crossref] [PubMed]

Wang, Y.

Wang, Z.

H. Yu, Z. Wang, H. Zhang, J. Wang, S. Zhuang, and X. Xu, “Optical bistability of a neodymium-doped microchip laser with intracavity saturable absorber,” Appl. Phys. Express 4(10), 102701 (2011).
[Crossref]

Wei, M.-D.

C.-C. Hsu, S.-S. Wu, C.-C. Chou, and M.-D. Wei, “Continuous-wave simultaneous dual-wavelength and power-ratio-tunable operation at 1064 and 1342 nm in an Nd:LuVO4 laser,” Laser Phys. 21(11), 1871–1875 (2011).
[Crossref]

Wu, S.-S.

C.-C. Hsu, S.-S. Wu, C.-C. Chou, and M.-D. Wei, “Continuous-wave simultaneous dual-wavelength and power-ratio-tunable operation at 1064 and 1342 nm in an Nd:LuVO4 laser,” Laser Phys. 21(11), 1871–1875 (2011).
[Crossref]

Xu, X.

H. Yu, Z. Wang, H. Zhang, J. Wang, S. Zhuang, and X. Xu, “Optical bistability of a neodymium-doped microchip laser with intracavity saturable absorber,” Appl. Phys. Express 4(10), 102701 (2011).
[Crossref]

Yu, H.

H. Yu, Z. Wang, H. Zhang, J. Wang, S. Zhuang, and X. Xu, “Optical bistability of a neodymium-doped microchip laser with intracavity saturable absorber,” Appl. Phys. Express 4(10), 102701 (2011).
[Crossref]

Zhang, H.

Zhang, X.

Zhong, L.-X.

J.-L. Li, M. Musha, A. Shirakawa, K.-I. Ueda, and L.-X. Zhong, “Dual-wavelength-switching operation based on optical bistability in pump-bypassed ytterbium-doped fiber laser,” Appl. Phys. B 85(4), 545–548 (2006).
[Crossref]

Zhuang, S.

H. Yu, Z. Wang, H. Zhang, J. Wang, S. Zhuang, and X. Xu, “Optical bistability of a neodymium-doped microchip laser with intracavity saturable absorber,” Appl. Phys. Express 4(10), 102701 (2011).
[Crossref]

Appl. Phys. B (1)

J.-L. Li, M. Musha, A. Shirakawa, K.-I. Ueda, and L.-X. Zhong, “Dual-wavelength-switching operation based on optical bistability in pump-bypassed ytterbium-doped fiber laser,” Appl. Phys. B 85(4), 545–548 (2006).
[Crossref]

Appl. Phys. Express (1)

H. Yu, Z. Wang, H. Zhang, J. Wang, S. Zhuang, and X. Xu, “Optical bistability of a neodymium-doped microchip laser with intracavity saturable absorber,” Appl. Phys. Express 4(10), 102701 (2011).
[Crossref]

Appl. Phys. Lett. (2)

M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, “Differential measurement of the coupling constant between laser eigenstates,” Appl. Phys. Lett. 70(16), 2070–2072 (1997).
[Crossref]

K. H. Levin and C. L. Tang, “Optical switching and bistability in tunable lasers,” Appl. Phys. Lett. 34(6), 376–378 (1979).
[Crossref]

Chem. Phys. Lett. (1)

S. Ruschin and S. H. Bauer, “Bistability, hysteresis and critical behavior of a CO2 Laser, with SF6 intracavity as a saturable absorber,” Chem. Phys. Lett. 66(1), 100–103 (1979).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Kawaguchi, “Bistable laser diodes and their applications: state of the art,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1254–1270 (1997).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

H. Kawaguchi, “Polarization bistable laser diodes,” J. Nonlinear Opt. Phys. Mater. 2(03), 367–389 (1993).
[Crossref]

Laser Phys. (2)

B. M. Walsh, “Dual wavelength lasers,” Laser Phys. 20(3), 622–634 (2010).
[Crossref]

C.-C. Hsu, S.-S. Wu, C.-C. Chou, and M.-D. Wei, “Continuous-wave simultaneous dual-wavelength and power-ratio-tunable operation at 1064 and 1342 nm in an Nd:LuVO4 laser,” Laser Phys. 21(11), 1871–1875 (2011).
[Crossref]

Opt. Commun. (2)

P. Langot, M. Vallet, M. Brunel, G. Ropars, F. Bretenaker, A. Le Floch, and K. D. Choquette, “Direct monitoring of the coupling constant in vectorial lasers,” Opt. Commun. 148(4-6), 270–274 (1998).
[Crossref]

G. S. Buller, R. J. Campbell, and A. C. Walker, “Polarization bistability and high contrast switching in an isotropic nonlinear cavity,” Opt. Commun. 75(1), 93–100 (1990).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Opt. Quantum Electron. (1)

Y. C. Chen and J. M. Liu, “Switching mechanism in polarization-bistable semiconductor lasers,” Opt. Quantum Electron. 19(S1), S93–S102 (1987).
[Crossref]

Phys. Rev. A (2)

L. Lugiato, P. Mandel, S. Dembinski, and A. Kossakowski, “Semiclassical and quantum theories of bistability in lasers containing saturable absorbers,” Phys. Rev. A 18(1), 238–254 (1978).
[Crossref]

S. Schwartz, G. Feugnet, M. Rebut, F. Bretenaker, and J. P. Pocholle, “Orientation of Nd3+ dipoles in yttrium aluminum garnet: experiment and model,” Phys. Rev. A 79(6), 063814 (2009).
[Crossref]

Other (3)

A. Siegman, Lasers (University Science, 1986).

M. Sargent III, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The experimental setup. (b) The transmission of EO PPLN versus the drive voltage at m = 0.
Fig. 2
Fig. 2 The output power versus the applied voltage of the PPLN (a) without adding polarizer, (b) with polarizer in x polarization, and (c) with polarizer in y polarization.
Fig. 3
Fig. 3 (a) The Fabry-Perot spectrum for 1064 nm and (b) the patterns at Va = 0, in which “pol.” represents polarization.
Fig. 4
Fig. 4 The simulation result for the steady-state intensity as a function of the y-polarized diffraction loss of the PPLN, Lp, based on the three-mode operation.
Fig. 5
Fig. 5 The size of the hysteresis as a function of the pump power

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d I n dt =2 I n ( α n - m=1 N θ nm I m ),

Metrics