Abstract

We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical scanning cryptography for secure wireless transmission

Ting-Chung Poon, Taegeun Kim, and Kyu Doh
Appl. Opt. 42(32) 6496-6503 (2003)

Optical color-image encryption and synthesis using coherent diffractive imaging in the Fresnel domain

Wen Chen, Xudong Chen, and Colin J. R. Sheppard
Opt. Express 20(4) 3853-3865 (2012)

Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform

Sudheesh K. Rajput and Naveen K. Nishchal
Appl. Opt. 52(4) 871-878 (2013)

References

  • View by:
  • |
  • |
  • |

  1. O. Matoba, T. Nomura, E. Perez-Cabre, M. Í. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009).
    [Crossref]
  2. B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997).
    [Crossref]
  3. J. F. Barrera, A. Mira, and R. Torroba, “Optical encryption and QR codes: secure and noise-free information retrieval,” Opt. Express 21(5), 5373–5378 (2013).
    [Crossref] [PubMed]
  4. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
    [Crossref] [PubMed]
  5. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25(12), 887–889 (2000).
    [Crossref] [PubMed]
  6. G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29(14), 1584–1586 (2004).
    [Crossref] [PubMed]
  7. Z. Liu, L. Xu, C. Lin, and S. Liu, “Image encryption by encoding with a nonuniform optical beam in gyrator transform domains,” Appl. Opt. 49(29), 5632–5637 (2010).
    [Crossref] [PubMed]
  8. L. Chen and D. Zhao, “Optical image encryption with Hartley transforms,” Opt. Lett. 31(23), 3438–3440 (2006).
    [Crossref] [PubMed]
  9. X. Tan, O. Matoba, Y. Okada-Shudo, M. Ide, T. Shimura, and K. Kuroda, “Secure optical memory system with polarization encryption,” Appl. Opt. 40(14), 2310–2315 (2001).
    [Crossref] [PubMed]
  10. W. Qin and X. Peng, “Asymmetric cryptosystem based on phase-truncated Fourier transforms,” Opt. Lett. 35(2), 118–120 (2010).
    [Crossref] [PubMed]
  11. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39(35), 6595–6601 (2000).
    [Crossref] [PubMed]
  12. B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25(1), 28–30 (2000).
    [Crossref] [PubMed]
  13. E. Tajahuerce, O. Matoba, S. C. Verrall, and B. Javidi, “Optoelectronic information encryption with phase-shifting interferometry,” Appl. Opt. 39(14), 2313–2320 (2000).
    [Crossref] [PubMed]
  14. T. Nomura, “Hybrid optical encryption of a 3-D object using a digital holographic technique,” Opt. Eng. 43(10), 2228–2232 (2004).
    [Crossref]
  15. T. C. Poon, T. Kim, and K. Doh, “Optical scanning cryptography for secure wireless transmission,” Appl. Opt. 42(32), 6496–6503 (2003).
    [Crossref] [PubMed]
  16. T. C. Poon, T. Kim, and K. Doh, “Optical scanning cryptography for secure wireless transmission,” Appl. Opt. 42(32), 6496–6503 (2003).
    [Crossref] [PubMed]
  17. Y. Zhi, Y. Zhou, J. Sun, A. Yan, Z. Luan, and L. Liu, “Self-homodyne interferometric detection in 2×4 optical hybrid for free-space optical communication,” Proc. SPIE 7814, 781412 (2010).
  18. P. Hou, Y. Zhi, Y. Zhou, J. Sun, and L. Liu, “An optical 2×4 90° hybrid based on a birefringent crystal for a coherent receiver in a free-space optical communication system,” Chin. Phys. Lett. 28(7), 074204 (2011).
    [Crossref]
  19. R. Garreis and C. Zeiss, “90° optical hybrid for coherent receivers,” Proc. SPIE 1522, 210–219 (1991).

2013 (1)

2011 (1)

P. Hou, Y. Zhi, Y. Zhou, J. Sun, and L. Liu, “An optical 2×4 90° hybrid based on a birefringent crystal for a coherent receiver in a free-space optical communication system,” Chin. Phys. Lett. 28(7), 074204 (2011).
[Crossref]

2010 (3)

2009 (1)

O. Matoba, T. Nomura, E. Perez-Cabre, M. Í. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009).
[Crossref]

2006 (1)

2004 (2)

G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29(14), 1584–1586 (2004).
[Crossref] [PubMed]

T. Nomura, “Hybrid optical encryption of a 3-D object using a digital holographic technique,” Opt. Eng. 43(10), 2228–2232 (2004).
[Crossref]

2003 (2)

2001 (1)

2000 (4)

1997 (1)

B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997).
[Crossref]

1995 (1)

1991 (1)

R. Garreis and C. Zeiss, “90° optical hybrid for coherent receivers,” Proc. SPIE 1522, 210–219 (1991).

Barrera, J. F.

Chen, L.

Doh, K.

Garreis, R.

R. Garreis and C. Zeiss, “90° optical hybrid for coherent receivers,” Proc. SPIE 1522, 210–219 (1991).

Hou, P.

P. Hou, Y. Zhi, Y. Zhou, J. Sun, and L. Liu, “An optical 2×4 90° hybrid based on a birefringent crystal for a coherent receiver in a free-space optical communication system,” Chin. Phys. Lett. 28(7), 074204 (2011).
[Crossref]

Ide, M.

Javidi, B.

Joseph, J.

Kim, T.

Kuroda, K.

Lin, C.

Liu, L.

P. Hou, Y. Zhi, Y. Zhou, J. Sun, and L. Liu, “An optical 2×4 90° hybrid based on a birefringent crystal for a coherent receiver in a free-space optical communication system,” Chin. Phys. Lett. 28(7), 074204 (2011).
[Crossref]

Y. Zhi, Y. Zhou, J. Sun, A. Yan, Z. Luan, and L. Liu, “Self-homodyne interferometric detection in 2×4 optical hybrid for free-space optical communication,” Proc. SPIE 7814, 781412 (2010).

Liu, S.

Liu, Z.

Luan, Z.

Y. Zhi, Y. Zhou, J. Sun, A. Yan, Z. Luan, and L. Liu, “Self-homodyne interferometric detection in 2×4 optical hybrid for free-space optical communication,” Proc. SPIE 7814, 781412 (2010).

Matoba, O.

Millan, M. Í. S.

O. Matoba, T. Nomura, E. Perez-Cabre, M. Í. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009).
[Crossref]

Mira, A.

Nomura, T.

O. Matoba, T. Nomura, E. Perez-Cabre, M. Í. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009).
[Crossref]

T. Nomura, “Hybrid optical encryption of a 3-D object using a digital holographic technique,” Opt. Eng. 43(10), 2228–2232 (2004).
[Crossref]

B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25(1), 28–30 (2000).
[Crossref] [PubMed]

Okada-Shudo, Y.

Peng, X.

Perez-Cabre, E.

O. Matoba, T. Nomura, E. Perez-Cabre, M. Í. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009).
[Crossref]

Poon, T. C.

Qin, W.

Refregier, P.

Shimura, T.

Singh, K.

Situ, G.

Sun, J.

P. Hou, Y. Zhi, Y. Zhou, J. Sun, and L. Liu, “An optical 2×4 90° hybrid based on a birefringent crystal for a coherent receiver in a free-space optical communication system,” Chin. Phys. Lett. 28(7), 074204 (2011).
[Crossref]

Y. Zhi, Y. Zhou, J. Sun, A. Yan, Z. Luan, and L. Liu, “Self-homodyne interferometric detection in 2×4 optical hybrid for free-space optical communication,” Proc. SPIE 7814, 781412 (2010).

Tajahuerce, E.

Tan, X.

Torroba, R.

Unnikrishnan, G.

Verrall, S. C.

Xu, L.

Yan, A.

Y. Zhi, Y. Zhou, J. Sun, A. Yan, Z. Luan, and L. Liu, “Self-homodyne interferometric detection in 2×4 optical hybrid for free-space optical communication,” Proc. SPIE 7814, 781412 (2010).

Zeiss, C.

R. Garreis and C. Zeiss, “90° optical hybrid for coherent receivers,” Proc. SPIE 1522, 210–219 (1991).

Zhang, J.

Zhao, D.

Zhi, Y.

P. Hou, Y. Zhi, Y. Zhou, J. Sun, and L. Liu, “An optical 2×4 90° hybrid based on a birefringent crystal for a coherent receiver in a free-space optical communication system,” Chin. Phys. Lett. 28(7), 074204 (2011).
[Crossref]

Y. Zhi, Y. Zhou, J. Sun, A. Yan, Z. Luan, and L. Liu, “Self-homodyne interferometric detection in 2×4 optical hybrid for free-space optical communication,” Proc. SPIE 7814, 781412 (2010).

Zhou, Y.

P. Hou, Y. Zhi, Y. Zhou, J. Sun, and L. Liu, “An optical 2×4 90° hybrid based on a birefringent crystal for a coherent receiver in a free-space optical communication system,” Chin. Phys. Lett. 28(7), 074204 (2011).
[Crossref]

Y. Zhi, Y. Zhou, J. Sun, A. Yan, Z. Luan, and L. Liu, “Self-homodyne interferometric detection in 2×4 optical hybrid for free-space optical communication,” Proc. SPIE 7814, 781412 (2010).

Appl. Opt. (6)

Chin. Phys. Lett. (1)

P. Hou, Y. Zhi, Y. Zhou, J. Sun, and L. Liu, “An optical 2×4 90° hybrid based on a birefringent crystal for a coherent receiver in a free-space optical communication system,” Chin. Phys. Lett. 28(7), 074204 (2011).
[Crossref]

Opt. Eng. (1)

T. Nomura, “Hybrid optical encryption of a 3-D object using a digital holographic technique,” Opt. Eng. 43(10), 2228–2232 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Phys. Today (1)

B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997).
[Crossref]

Proc. IEEE (1)

O. Matoba, T. Nomura, E. Perez-Cabre, M. Í. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009).
[Crossref]

Proc. SPIE (2)

Y. Zhi, Y. Zhou, J. Sun, A. Yan, Z. Luan, and L. Liu, “Self-homodyne interferometric detection in 2×4 optical hybrid for free-space optical communication,” Proc. SPIE 7814, 781412 (2010).

R. Garreis and C. Zeiss, “90° optical hybrid for coherent receivers,” Proc. SPIE 1522, 210–219 (1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The encryption system of modified optical scanning cryptography.
Fig. 2
Fig. 2 The decryption system of modified optical scanning cryptography.
Fig. 3
Fig. 3 The basic principle of a 90 degree 2 × 4 optical hybrid.
Fig. 4
Fig. 4 (a) The original image to be encrypted; (b) real part and (c) imaginary part of the original image multiplied by a random phase plate; (d) intensity of encrypted image.
Fig. 5
Fig. 5 Intensity of the decrypted image with the correct decryption key with (a) zd = zc and (b) zd = 2zc; (c) the decrypted image with wrong decryption key and the correct decoding distance.
Fig. 6
Fig. 6 (a) The original image; (b) the encrypted image; and (c) the decrypted image.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E scan (x,y; z c )=[ E p (x,y; z c ) E s (x,y; z c ) ]exp(j ω 0 t),
P a (x',y'; z c )=T(x'+x,y'+y; z c ) E scan (x',y'; z c )
U S = 2 2 [ 1 1 ] E p ( x ' , y ' ;z)T( x ' +x, y ' +y;z),
U L = 2 2 [ 1 1 ] E s ( x ' , y ' ;z)T( x ' +x, y ' +y;z).
U 0 ={ 2 2 e j τ // [ E s ( x ' , y ' ) e j τ // e jπ/4 + E p ( x ' , y ' ) e j ρ ]}T( x ' +x, y ' +y;z),
U 180 ={ 2 2 e j ρ [ E s ( x ' , y ' ) e j τ // e jπ/4 E p ( x ' , y ' ) e j ρ ]}T( x ' +x, y ' +y;z),
U 90 ={ 2 2 e j τ // [ E p ( x ' , y ' ) e j τ // + E s ( x ' , y ' ) e j ρ e jπ/4 ]}T( x ' +x, y ' +y;z),
U 270 ={ 2 2 e j ρ [ E p ( x ' , y ' ) e j τ // E s ( x ' , y ' ) e j ρ e jπ/4 ]}T( x ' +x, y ' +y;z),
I 0 I 180 =2| E S E p |cos[ϕ(t)],
I 90 I 270 =2| E S E p |cos[ϕ(t)+ π 2 ],
i d (x,y)= i 0 i 180 Re[ E s E p * e jϕ ]|T | 2 dz = H sin (x,y),
i q (x,y)= i 90 i 270 Im[ E s E p * e jϕ ]|T | 2 dz = H cos (x,y).
H(x,y; z c )h(x,y; z d ).

Metrics