Abstract

Laser written waveguides in crystalline materials can be used to make highly efficient, high gain lasers. The bi-directional emission from such lasers however is typically broadband with poor spectral control. Hybridizing a tapered, mode matched laser written Bragg grating with a broadband Yb:YAG crystalline waveguide laser, we demonstrate single longitudinal mode output from one end of the device. Careful control of the grating characteristics led to laser thresholds below 90 mW, slope efficiencies greater than 42% and output powers greater than 20 mW.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid single longitudinal mode Yb:YAG waveguide laser with 1.6 W output power

Thomas Calmano, Martin Ams, Peter Dekker, Michael J. Withford, and Christian Kränkel
Opt. Mater. Express 7(8) 2777-2782 (2017)

Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser

Jörg Siebenmorgen, Thomas Calmano, Klaus Petermann, and Günter Huber
Opt. Express 18(15) 16035-16041 (2010)

Efficient waveguide lasers in femtosecond laser inscribed double-cladding waveguides of Yb:YAG ceramics

Yuechen Jia, J. R. Vázquez de Aldana, and Feng Chen
Opt. Mater. Express 3(5) 645-650 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  3. R. Osellame, G. Cerullo, and R. Ramponi, eds., Femtosecond Laser Micromachining, Topics in Applied Physics Vol. 123 (Springer, 2012).
  4. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
    [Crossref]
  5. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
    [Crossref]
  6. F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  7. T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
    [Crossref]
  8. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
    [Crossref]
  9. D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012).
    [Crossref] [PubMed]
  10. Y. Duan, P. Dekker, M. Ams, G. Palmer, and M. J. Withford, “Time dependent study of femtosecond laser written waveguide lasers in Yb-doped silicate and phosphate glass,” Opt. Mater. Express 5(2), 416 (2015).
    [Crossref]
  11. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
    [Crossref] [PubMed]
  12. T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
    [Crossref] [PubMed]
  13. D. Marcuse, Light Transmission Optics, 1st ed. (Van Nostrand Reinhold Company, 1972).
  14. P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett. 37(4), 470–472 (2012).
    [Crossref] [PubMed]
  15. S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
    [Crossref]
  16. G. Cheng, C. D’Amico, X. Liu, and R. Stoian, “Large mode area waveguides with polarization functions by volume ultrafast laser photoinscription of fused silica,” Opt. Lett. 38(11), 1924–1926 (2013).
    [Crossref] [PubMed]
  17. T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114, 113–118 (2013).
  18. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
    [Crossref] [PubMed]
  19. D. J. Little, M. Ams, and M. J. Withford, “Influence of bandgap and polarization on photo-ionization: guidelines for ultrafast laser inscription [Invited],” Opt. Mater. Express 1(4), 670–677 (2011).
    [Crossref]
  20. H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32(17), 2559–2561 (2007).
    [Crossref] [PubMed]
  21. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  22. K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron. 40(6), 711–720 (2004).
    [Crossref]
  23. Y. Zhang, B.-O. Guan, and H.-Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Opt. Express 17(12), 10050–10055 (2009).
    [Crossref] [PubMed]

2015 (2)

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
[Crossref]

Y. Duan, P. Dekker, M. Ams, G. Palmer, and M. J. Withford, “Time dependent study of femtosecond laser written waveguide lasers in Yb-doped silicate and phosphate glass,” Opt. Mater. Express 5(2), 416 (2015).
[Crossref]

2014 (3)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (1)

2010 (1)

2009 (3)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Y. Zhang, B.-O. Guan, and H.-Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Opt. Express 17(12), 10050–10055 (2009).
[Crossref] [PubMed]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (1)

2005 (1)

2004 (1)

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron. 40(6), 711–720 (2004).
[Crossref]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1996 (1)

Ams, M.

Arriola, A.

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114, 113–118 (2013).

Booth, M. J.

Calmano, T.

Chen, F.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Cheng, G.

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

D’Amico, C.

Davis, K. M.

de Aldana, J. R. V.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Dekker, P.

Y. Duan, P. Dekker, M. Ams, G. Palmer, and M. J. Withford, “Time dependent study of femtosecond laser written waveguide lasers in Yb-doped silicate and phosphate glass,” Opt. Mater. Express 5(2), 416 (2015).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Duan, Y.

Eaton, S. M.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Fuerbach, A.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gross, S.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114, 113–118 (2013).

D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012).
[Crossref] [PubMed]

Guan, B.-O.

Heidepriem, H. E.

Herman, P. R.

Hickey, L. M. B.

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron. 40(6), 711–720 (2004).
[Crossref]

Hirao, K.

Huber, G.

Jesacher, A.

Jovanovic, N.

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114, 113–118 (2013).

Kar, A. K.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Kränkel, C.

Lancaster, D. G.

Langford, N. K.

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Little, D. J.

Liu, X.

Love, J. D.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Marshall, G.

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Meany, T.

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114, 113–118 (2013).

Metcalf, B. J.

Miura, K.

Monro, T. M.

Müller, S.

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
[Crossref]

T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
[Crossref] [PubMed]

Osellame, R.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Palmer, G.

Paschke, A.-G.

Petermann, K.

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Riesen, N.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Salter, P. S.

Siebenmorgen, J.

Simmonds, R. D.

Spence, D.

Spring, J. B.

Steel, M. J.

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114, 113–118 (2013).

Stoian, R.

Sugimoto, N.

Tam, H.-Y.

Thomas-Peter, N.

Walmsley, I. A.

Withford, M.

Withford, M. J.

Y. Duan, P. Dekker, M. Ams, G. Palmer, and M. J. Withford, “Time dependent study of femtosecond laser written waveguide lasers in Yb-doped silicate and phosphate glass,” Opt. Mater. Express 5(2), 416 (2015).
[Crossref]

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114, 113–118 (2013).

D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012).
[Crossref] [PubMed]

D. J. Little, M. Ams, and M. J. Withford, “Influence of bandgap and polarization on photo-ionization: guidelines for ultrafast laser inscription [Invited],” Opt. Mater. Express 1(4), 670–677 (2011).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

Yelen, K.

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron. 40(6), 711–720 (2004).
[Crossref]

Zervas, M. N.

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron. 40(6), 711–720 (2004).
[Crossref]

Zhang, H.

Zhang, Y.

Appl. Phys., A Mater. Sci. Process. (1)

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys., A Mater. Sci. Process. 114, 113–118 (2013).

IEEE J. Quantum Electron. (1)

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron. 40(6), 711–720 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602213 (2015).
[Crossref]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

Laser Photonics Rev. (4)

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev. 3(6), 535–544 (2009).
[Crossref]

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opt. Mater. Express (2)

Other (2)

R. Osellame, G. Cerullo, and R. Ramponi, eds., Femtosecond Laser Micromachining, Topics in Applied Physics Vol. 123 (Springer, 2012).

D. Marcuse, Light Transmission Optics, 1st ed. (Van Nostrand Reinhold Company, 1972).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Free space coupling setup used to pump and characterize an Yb:YAG waveguide laser coupled to a high reflector (HR). [ L1: f = 6.24 mm aspheric lens (NA 0.40), L2: f = 15.29 mm aspheric lens (NA 0.16) ]. (b) Hybrid integration of the Yb:YAG waveguide laser with highly reflective waveguide Bragg gratings (WBGs). Cooperative Yb3+ fluorescence and fluorescence of Er3+ and Tm3+ impurities along the Yb:YAG channel waveguide can be seen.
Fig. 2
Fig. 2 Broadband, multimode laser emission from a resonator formed between the Fresnel reflection at the Yb:YAG pump input facet and a thin high reflecting (HR) mirror at the other facet.
Fig. 3
Fig. 3 Transmission spectra of (right) 5.3 mm long, 50% duty cycle 1st order waveguide Bragg gratings (WBGs) with large coupling coefficients (κ ~700/m) and a (left) 12.3 mm long, 90% duty cycle 2nd order WBG with κ ~177/m.
Fig. 4
Fig. 4 Hybrid integration of an Yb:YAG waveguide laser with 1st order waveguide Bragg grating high reflectors. (a) Uni-directional laser output with respect to pump power and (b) a typical optimized emission spectrum.
Fig. 5
Fig. 5 Single longitudinal mode laser emission (at maximum output power of 23 mW) from the hybrid integration of an Yb:YAG waveguide laser with a 2nd order waveguide Bragg grating high reflector.

Tables (2)

Tables Icon

Table 1 Characteristics of waveguide Bragg grating (WBG) structures fabricated in AF45 aluminoborosilicate glass using the ultrafast laser inscription technique.

Tables Icon

Table 2 Summary of Yb:YAG and hybrid Yb:YAG/WBG waveguide lasers

Metrics