Abstract

We propose and demonstrate an on-chip optical correlator, in which two types of photonic crystal slow-light waveguides are integrated and operated as an optical delay scanner and a two-photon-absorption photodetector. The footprint of the device, which was fabricated using a CMOS-compatible process, was 1.0 × 0.3 mm2, which is substantially smaller than that of conventional optical correlators with free-space optics. We observed optical pulses using this device and confirmed the correspondence of pulse waveforms with those observed using a commercial correlator when the pulse width was 5−7 ps. This device will achieve one-chipping of an optical correlator and related measurement instruments.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large tunable fractional delay of slow light pulse and its application to fast optical correlator

Norihiro Ishikura, Toshihiko Baba, Eichi Kuramochi, and Masaya Notomi
Opt. Express 19(24) 24102-24108 (2011)

Continuously tunable slow-light device consisting of heater-controlled silicon microring array

Fumihiro Shinobu, Norihiro Ishikura, Yoshiki Arita, Takemasa Tamanuki, and Toshihiko Baba
Opt. Express 19(14) 13557-13564 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. An, K. Pyun, O. Kwon, and D. E. Kim, “An autocorrelator based on a Fabry-Perot interferometer,” Opt. Express 21(1), 70–78 (2013).
    [Crossref] [PubMed]
  2. C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5(2), 3246 (2014).
    [PubMed]
  3. H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
    [Crossref] [PubMed]
  4. F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The Two-Photon-Absorption Semiconductor Waveguide Autocorrelator,” IEEE J. Quantum Electron. 30(3), 838–845 (1994).
    [Crossref]
  5. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
    [Crossref]
  6. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett. 17(9), 658–660 (1992).
    [Crossref] [PubMed]
  7. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22(17), 1344–1346 (1997).
  8. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823–825 (1993).
    [Crossref] [PubMed]
  9. A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
    [Crossref]
  10. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26(12), 932–934 (2001).
    [Crossref] [PubMed]
  11. P. Gabolde and R. Trebino, “Single-frame measurement of the complete spatiotemporal intensity and phase of ultrashort laser pulses using wavelength-multiplexed digital holography,” J. Opt. Soc. Am. B 25(6), A25–A33 (2008).
    [Crossref]
  12. P. Bowlan, U. Fuchs, R. Trebino, and U. D. Zeitner, “Measuring the spatiotemporal electric field of tightly focused ultrashort pulses with sub-micron spatial resolution,” Opt. Express 16(18), 13663–13675 (2008).
    [Crossref] [PubMed]
  13. N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
    [Crossref]
  14. R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “High-speed delay tuning of slow light in pin-diode-incorporated photonic crystal waveguide,” Opt. Lett. 38(15), 2680–2682 (2013).
    [Crossref] [PubMed]
  15. R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102(3), 031114 (2013).
    [Crossref]
  16. M. Shinkawa, N. Ishikura, Y. Hama, K. Suzuki, and T. Baba, “Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process,” Opt. Express 19(22), 22208–22218 (2011).
    [Crossref] [PubMed]
  17. T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, and T. Baba, “Silica-Clad Silicon Photonic Crystal Waveguides for Wideband Dispersion-Free Slow Light,” J. Light. Technol. (2015, presently available on line).
  18. F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011).
    [Crossref] [PubMed]

2014 (2)

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5(2), 3246 (2014).
[PubMed]

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

2011 (3)

2008 (2)

2002 (1)

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

2001 (1)

1997 (1)

1994 (1)

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The Two-Photon-Absorption Semiconductor Waveguide Autocorrelator,” IEEE J. Quantum Electron. 30(3), 838–845 (1994).
[Crossref]

1993 (1)

1992 (1)

An, J.

Arita, Y.

Asghari, M.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

Azaña, J.

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[Crossref]

Baba, T.

Baltuska, A.

Barrow, D. A.

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The Two-Photon-Absorption Semiconductor Waveguide Autocorrelator,” IEEE J. Quantum Electron. 30(3), 838–845 (1994).
[Crossref]

Bowlan, P.

Chu, S. T.

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[Crossref]

Clark, A.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5(2), 3246 (2014).
[PubMed]

Collins, M.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5(2), 3246 (2014).
[PubMed]

Day, I. E.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

Drake, J.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

Eggleton, B. J.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5(2), 3246 (2014).
[PubMed]

Fang, W.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

Fuchs, U.

Gabolde, P.

Gaeta, A. L.

Grillet, C.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5(2), 3246 (2014).
[PubMed]

Gu, X.

Hama, Y.

Hayakawa, R.

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “High-speed delay tuning of slow light in pin-diode-incorporated photonic crystal waveguide,” Opt. Lett. 38(15), 2680–2682 (2013).
[Crossref] [PubMed]

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102(3), 031114 (2013).
[Crossref]

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Hosoi, R.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

Imamura, S.

Ishikura, N.

Kane, D. J.

Kim, D. E.

Kimmel, M.

Knights, A. P.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

Kobayashi, T.

Krauss, T. F.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5(2), 3246 (2014).
[PubMed]

Kwon, O.

Laughton, F. R.

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The Two-Photon-Absorption Semiconductor Waveguide Autocorrelator,” IEEE J. Quantum Electron. 30(3), 838–845 (1994).
[Crossref]

Li, J.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5(2), 3246 (2014).
[PubMed]

Liang, T. K.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

Lin, X.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

Little, B. E.

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[Crossref]

Liu, W.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

Marsh, J. H.

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The Two-Photon-Absorption Semiconductor Waveguide Autocorrelator,” IEEE J. Quantum Electron. 30(3), 838–845 (1994).
[Crossref]

Monat, C.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5(2), 3246 (2014).
[PubMed]

Morandotti, R.

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[Crossref]

Moss, D. J.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5(2), 3246 (2014).
[PubMed]

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[Crossref]

Nguyen, H. C.

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102(3), 031114 (2013).
[Crossref]

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “High-speed delay tuning of slow light in pin-diode-incorporated photonic crystal waveguide,” Opt. Lett. 38(15), 2680–2682 (2013).
[Crossref] [PubMed]

O’Faolain, L.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5(2), 3246 (2014).
[PubMed]

O’Shea, P.

Park, Y.

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[Crossref]

Pasquazi, A.

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[Crossref]

Peccianti, M.

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[Crossref]

Portnoi, E. L.

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The Two-Photon-Absorption Semiconductor Waveguide Autocorrelator,” IEEE J. Quantum Electron. 30(3), 838–845 (1994).
[Crossref]

Pshenichnikov, M. S.

Pyun, K.

Ranka, J. K.

Schroeder, J.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5(2), 3246 (2014).
[PubMed]

Shen, Y. R.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

Shinkawa, M.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

M. Shinkawa, N. Ishikura, Y. Hama, K. Suzuki, and T. Baba, “Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process,” Opt. Express 19(22), 22208–22218 (2011).
[Crossref] [PubMed]

Shinobu, F.

Suzuki, K.

Takagi, Y.

Tamanuki, T.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011).
[Crossref] [PubMed]

Tong, L.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

Trebino, R.

Tsang, H. K.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

Wang, A.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

Wiersma, D. A.

Wu, X.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

Xiong, C.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5(2), 3246 (2014).
[PubMed]

Yoshihara, K.

Yu, H.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

Zeitner, U. D.

Appl. Phys. Lett. (3)

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100(22), 221110 (2012).
[Crossref]

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102(3), 031114 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The Two-Photon-Absorption Semiconductor Waveguide Autocorrelator,” IEEE J. Quantum Electron. 30(3), 838–845 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5(2), 3246 (2014).
[PubMed]

Nat. Photonics (1)

A. Pasquazi, M. Peccianti, Y. Park, B. E. Little, S. T. Chu, R. Morandotti, J. Azaña, and D. J. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics 5(10), 618–623 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Other (1)

T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, and T. Baba, “Silica-Clad Silicon Photonic Crystal Waveguides for Wideband Dispersion-Free Slow Light,” J. Light. Technol. (2015, presently available on line).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the on-chip optical correlator.
Fig. 2
Fig. 2 Fabricated device and details of the MMI branch, 10% tap, and LSPCW. Figures in the branch and 10% tap are in units of microns. The doped region in the right-upper picture of TPA-PD is colored schematically.
Fig. 3
Fig. 3 Group delay spectrum showing three different bands (1)−(3). Black line shows no heating condition, while red and orange show heating conditions with heating powers of 293 and 835 mW, respectively.
Fig. 4
Fig. 4 Operation of two LSPCW components. (a) Delay tuning characteristics. The inset of the upper panel shows the cross-correlation waveform of the output pulse measured off-chip, where the FWHM of the reference pulse was 1.0 ps. (b) Responsivity characteristics of the TPA-PD.
Fig. 5
Fig. 5 Auto-correlation waveforms (blue) measured using the developed on-chip optical correlator (circles) and a simulated one (solid lines). Temporal FWHMs of incident pulse was 3, 5, 7 and 10 ps from upper to lower pannels. Open and closed circles depict those obtained in two different measurement trials. Red dotted lines show the temporal FWHM of the pulse tapped from the delay scanner and measured externally for each incident pulse width.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E i ( t )= I i (t) e j(ωt+ φ i ) ( i= 1, 2 )
I i ( t )= L i I 0 (t) /2
i( τ )= | 1 2 E 1 ( t )+ 1 2 E 2 ( τt ) | 4 dt= 1 4 | I 1 (t) e j( ωt+ φ 1 ) + I 2 (τt) e j{ ω( τt )+ φ 2 } | 4 dt = C 0 ( τ )+ C 1 ( τ )cos( ωτ+Δφ )+ C 2 ( τ )cos2( ωτ+Δφ )
C 0 ( τ )= 1 16 [ L 1 2 I 0 2 ( t )+ L 2 2 I 0 2 ( τt ) 2 +4 L 1 L 2 I 0 ( t ) I 0 ( τt ) ]dt C 1 ( τ )= 1 4 L 1 L 2 I 0 ( t ) I 0 ( τt ) [ L 1 I 0 ( t )+ L 2 I 0 ( τt ) ]dt C 2 ( τ )= 1 8 L 1 L 2 I 0 ( t ) I 0 ( τt )dt
Peak:Background= L 1 2 + L 2 2 +6 L 1 L 2 +4 L 1 L 2 ( L 1 + L 2 ): L 1 2 + L 2 2

Metrics