Abstract

Abstract: We demonstrate integrated basic photonic components and Bragg gratings using 60-nm-thick silicon-on-insulator strip waveguides. The ultra-thin waveguides exhibit a propagation loss of 0.61 dB/cm and a bending loss of approximately 0.015 dB/180° with a 30 μm bending radius (including two straight-bend waveguide junctions). Basic structures based on the ultra-thin waveguides, including micro-ring resonators, 1 × 2 MMI couplers, and Mach-Zehnder interferometers are realized. Upon thinning-down, the waveguide effective refractive index is reduced, making the fabrication of Bragg gratings possible using the standard 248-nm deep ultra-violet (DUV) photolithography process. The Bragg grating exhibits a stopband width of 1 nm and an extinction ratio of 35 dB, which is practically applicable as an optical filter or a delay line. The transmission spectrum can be thermally tuned via an integrated resistive micro-heater formed by a heavily doped silicon slab beside the waveguide.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable spiral Bragg gratings in 60-nm-thick silicon-on-insulator strip waveguides

Zhi Zou, Linjie Zhou, Minjuan Wang, Kan Wu, and Jianping Chen
Opt. Express 24(12) 12831-12839 (2016)

Ultra-broadband, compact, and high-reflectivity circular Bragg grating mirror based on 220 nm silicon-on-insulator platform

Yang Wang, Shitao Gao, Ke Wang, Hongtao Li, and Efstratios Skafidas
Opt. Express 25(6) 6653-6663 (2017)

Spiral Bragg grating waveguides for TM mode silicon photonics

Zhitian Chen, Jonas Flueckiger, Xu Wang, Fan Zhang, Han Yun, Zeqin Lu, Michael Caverley, Yun Wang, Nicolas A. F. Jaeger, and Lukas Chrostowski
Opt. Express 23(19) 25295-25307 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J.-H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20(11), 12035–12039 (2012).
    [Crossref] [PubMed]
  2. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
    [Crossref] [PubMed]
  3. M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
    [Crossref]
  4. L. He, Y. He, A. Pomerene, C. Hill, S. Ocheltree, T. Baehr-Jones, and M. Hochberg, “Ultrathin silicon-on-insulator grating couplers,” IEEE Photonics Technol. Lett. 24(24), 2247–2249 (2012).
    [Crossref]
  5. S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
    [Crossref] [PubMed]
  6. S. Yang, Y. Zhang, D. W. Grund, G. A. Ejzak, Y. Liu, A. Novack, D. Prather, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A single adiabatic microring-based laser in 220 nm silicon-on-insulator,” Opt. Express 22(1), 1172–1180 (2014).
    [Crossref] [PubMed]
  7. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355 (1997).
    [Crossref]
  8. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  9. J. R. Grenier, L. A. Fernandes, J. S. Aitchison, P. V. S. Marques, and P. R. Herman, “Femtosecond laser fabrication of phase-shifted Bragg grating waveguides in fused silica,” Opt. Lett. 37(12), 2289–2291 (2012).
    [Crossref] [PubMed]
  10. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
    [Crossref] [PubMed]
  11. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett. 34(9), 1357–1359 (2009).
    [Crossref] [PubMed]
  12. X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39(19), 5519–5522 (2014).
    [Crossref] [PubMed]
  13. A. D. Simard, M. J. Strain, L. Meriggi, M. Sorel, and S. LaRochelle, “Bandpass integrated Bragg gratings in silicon-on-insulator with well-controlled amplitude and phase responses,” Opt. Lett. 40(5), 736–739 (2015).
    [Crossref] [PubMed]
  14. I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20(10), 11241–11246 (2012).
    [Crossref] [PubMed]
  15. I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photonics Technol. Lett. 21(24), 1894–1896 (2009).
    [Crossref]
  16. A. D. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, “Impact of sidewall roughness on integrated Bragg gratings,” J. Lightwave Technol. 29(24), 3693–3704 (2011).
    [Crossref]
  17. Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, “Tunable two-stage self-coupled optical waveguide resonators,” Opt. Lett. 38(8), 1215–1217 (2013).
    [Crossref] [PubMed]
  18. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
    [Crossref] [PubMed]
  19. F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express 14(9), 3872–3886 (2006).
    [Crossref] [PubMed]
  20. E. Dulkeith, F. Xia, L. Schares, W. M. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
    [Crossref] [PubMed]
  21. Y. Liang and C. P. Grover, “Modified white-light Mach-Zehnder interferometer for direct group-delay measurements,” Appl. Opt. 37(19), 4105–4111 (1998).
    [Crossref] [PubMed]
  22. L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5(4), 6601211 (2013).
    [Crossref]
  23. S. Khan and S. Fathpour, “Demonstration of complementary apodized cascaded grating waveguides for tunable optical delay lines,” Opt. Lett. 38(19), 3914–3917 (2013).
    [Crossref] [PubMed]
  24. S. Khan and S. Fathpour, “Demonstration of tunable optical delay lines based on apodized grating waveguides,” Opt. Express 21(17), 19538–19543 (2013).
    [Crossref] [PubMed]
  25. Q. Fang, X. Tu, J. Song, L. Jia, X. Luo, Y. Yang, M. Yu, and G. Lo, “PN-type carrier-induced filter with modulatable extinction ratio,” Opt. Express 22(24), 29914–29920 (2014).
    [Crossref] [PubMed]
  26. X. Wang, “Silicon photonic waveguide Bragg gratings,” Ph.D. thesis (University of British Columbia, 2013).
  27. A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. Larochelle, “Characterization and reduction of spectral distortions in Silicon-on-Insulator integrated Bragg gratings,” Opt. Express 21(20), 23145–23159 (2013).
    [Crossref] [PubMed]

2015 (1)

2014 (4)

2013 (5)

2012 (6)

2011 (1)

2009 (3)

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photonics Technol. Lett. 21(24), 1894–1896 (2009).
[Crossref]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
[Crossref] [PubMed]

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett. 34(9), 1357–1359 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (2)

1998 (1)

1997 (1)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355 (1997).
[Crossref]

Aimez, V.

Aitchison, J. S.

Ayotte, N.

Baehr-Jones, T.

S. Yang, Y. Zhang, D. W. Grund, G. A. Ejzak, Y. Liu, A. Novack, D. Prather, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A single adiabatic microring-based laser in 220 nm silicon-on-insulator,” Opt. Express 22(1), 1172–1180 (2014).
[Crossref] [PubMed]

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[Crossref]

L. He, Y. He, A. Pomerene, C. Hill, S. Ocheltree, T. Baehr-Jones, and M. Hochberg, “Ultrathin silicon-on-insulator grating couplers,” IEEE Photonics Technol. Lett. 24(24), 2247–2249 (2012).
[Crossref]

Bauer, J.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photonics Technol. Lett. 21(24), 1894–1896 (2009).
[Crossref]

Beaudin, G.

Bedard, S.

Bojko, R.

Bojko, R. J.

Bruns, J.

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20(10), 11241–11246 (2012).
[Crossref] [PubMed]

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photonics Technol. Lett. 21(24), 1894–1896 (2009).
[Crossref]

Cardenas, J.

Chen, J.

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5(4), 6601211 (2013).
[Crossref]

Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, “Tunable two-stage self-coupled optical waveguide resonators,” Opt. Lett. 38(8), 1215–1217 (2013).
[Crossref] [PubMed]

Chen, L.

Chrostowski, L.

Cunningham, J. E.

Donzella, V.

Dulkeith, E.

Ejzak, G. A.

Fainman, Y.

Fang, Q.

Fard, S. T.

Fathpour, S.

Fernandes, L. A.

Flueckiger, J.

Gajda, A.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photonics Technol. Lett. 21(24), 1894–1896 (2009).
[Crossref]

Giuntoni, I.

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20(10), 11241–11246 (2012).
[Crossref] [PubMed]

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photonics Technol. Lett. 21(24), 1894–1896 (2009).
[Crossref]

Gould, M.

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[Crossref]

Green, W. M.

Grenier, J. R.

Grist, S.

Grist, S. M.

Grover, C. P.

Grund, D. W.

He, L.

L. He, Y. He, A. Pomerene, C. Hill, S. Ocheltree, T. Baehr-Jones, and M. Hochberg, “Ultrathin silicon-on-insulator grating couplers,” IEEE Photonics Technol. Lett. 24(24), 2247–2249 (2012).
[Crossref]

He, Y.

L. He, Y. He, A. Pomerene, C. Hill, S. Ocheltree, T. Baehr-Jones, and M. Hochberg, “Ultrathin silicon-on-insulator grating couplers,” IEEE Photonics Technol. Lett. 24(24), 2247–2249 (2012).
[Crossref]

Herman, P. R.

Hill, C.

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[Crossref]

L. He, Y. He, A. Pomerene, C. Hill, S. Ocheltree, T. Baehr-Jones, and M. Hochberg, “Ultrathin silicon-on-insulator grating couplers,” IEEE Photonics Technol. Lett. 24(24), 2247–2249 (2012).
[Crossref]

Hochberg, M.

S. Yang, Y. Zhang, D. W. Grund, G. A. Ejzak, Y. Liu, A. Novack, D. Prather, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A single adiabatic microring-based laser in 220 nm silicon-on-insulator,” Opt. Express 22(1), 1172–1180 (2014).
[Crossref] [PubMed]

L. He, Y. He, A. Pomerene, C. Hill, S. Ocheltree, T. Baehr-Jones, and M. Hochberg, “Ultrathin silicon-on-insulator grating couplers,” IEEE Photonics Technol. Lett. 24(24), 2247–2249 (2012).
[Crossref]

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[Crossref]

Ikeda, K.

Jaeger, N. A.

Jaeger, N. A. F.

Jia, L.

Khan, M. H.

Khan, S.

Krishnamoorthy, A. V.

Kroushkov, D. I.

Kwok, E.

LaRochelle, S.

Lee, J.-H.

Li, G.

Li, X.

Liang, Y.

Lim, A. E.-J.

Lipson, M.

Liu, A.

Liu, Y.

Lo, G.

Lo, G.-Q.

Lu, L.

Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, “Tunable two-stage self-coupled optical waveguide resonators,” Opt. Lett. 38(8), 1215–1217 (2013).
[Crossref] [PubMed]

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5(4), 6601211 (2013).
[Crossref]

Luo, X.

Luo, Y.

Marques, P. V. S.

Marschmeyer, S.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photonics Technol. Lett. 21(24), 1894–1896 (2009).
[Crossref]

Mekis, A.

Meriggi, L.

Novack, A.

Ocheltree, S.

L. He, Y. He, A. Pomerene, C. Hill, S. Ocheltree, T. Baehr-Jones, and M. Hochberg, “Ultrathin silicon-on-insulator grating couplers,” IEEE Photonics Technol. Lett. 24(24), 2247–2249 (2012).
[Crossref]

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[Crossref]

Painchaud, Y.

Petermann, K.

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20(10), 11241–11246 (2012).
[Crossref] [PubMed]

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photonics Technol. Lett. 21(24), 1894–1896 (2009).
[Crossref]

Poitras, C. B.

Pomerene, A.

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[Crossref]

L. He, Y. He, A. Pomerene, C. Hill, S. Ocheltree, T. Baehr-Jones, and M. Hochberg, “Ultrathin silicon-on-insulator grating couplers,” IEEE Photonics Technol. Lett. 24(24), 2247–2249 (2012).
[Crossref]

Pond, J.

Prather, D.

Preston, K.

Qi, M.

Raj, K.

Rao, Y. J.

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355 (1997).
[Crossref]

Ratner, D. M.

Reid, A.

Richter, H.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photonics Technol. Lett. 21(24), 1894–1896 (2009).
[Crossref]

Robinson, J. T.

Schares, L.

Schmidt, S. A.

Sekaric, L.

Shen, H.

Shi, W.

Shubin, I.

Simard, A. D.

Song, J.

Sorel, M.

Stolarek, D.

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20(10), 11241–11246 (2012).
[Crossref] [PubMed]

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photonics Technol. Lett. 21(24), 1894–1896 (2009).
[Crossref]

Strain, M. J.

Sun, X.

Talebi Fard, P.

Tan, D. T. H.

Thacker, H.

Tillack, B.

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20(10), 11241–11246 (2012).
[Crossref] [PubMed]

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photonics Technol. Lett. 21(24), 1894–1896 (2009).
[Crossref]

Tu, X.

Vlasov, Y. A.

Wang, X.

Wang, Y.

Wu, Y.

Xia, F.

Xiao, S.

Xie, J.

Yang, S.

Yang, Y.

Yao, J.

Yu, M.

Yun, H.

Zhang, X.

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5(4), 6601211 (2013).
[Crossref]

Zhang, Y.

S. Yang, Y. Zhang, D. W. Grund, G. A. Ejzak, Y. Liu, A. Novack, D. Prather, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A single adiabatic microring-based laser in 220 nm silicon-on-insulator,” Opt. Express 22(1), 1172–1180 (2014).
[Crossref] [PubMed]

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[Crossref]

Zheng, X.

Zhou, L.

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5(4), 6601211 (2013).
[Crossref]

Z. Zou, L. Zhou, X. Sun, J. Xie, H. Zhu, L. Lu, X. Li, and J. Chen, “Tunable two-stage self-coupled optical waveguide resonators,” Opt. Lett. 38(8), 1215–1217 (2013).
[Crossref] [PubMed]

Zhu, H.

Zimmermann, L.

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20(10), 11241–11246 (2012).
[Crossref] [PubMed]

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photonics Technol. Lett. 21(24), 1894–1896 (2009).
[Crossref]

Zou, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101(22), 221106 (2012).
[Crossref]

IEEE Photonics J. (1)

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5(4), 6601211 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. He, Y. He, A. Pomerene, C. Hill, S. Ocheltree, T. Baehr-Jones, and M. Hochberg, “Ultrathin silicon-on-insulator grating couplers,” IEEE Photonics Technol. Lett. 24(24), 2247–2249 (2012).
[Crossref]

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photonics Technol. Lett. 21(24), 1894–1896 (2009).
[Crossref]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355 (1997).
[Crossref]

Opt. Express (12)

E. Dulkeith, F. Xia, L. Schares, W. M. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006).
[Crossref] [PubMed]

F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express 14(9), 3872–3886 (2006).
[Crossref] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
[Crossref] [PubMed]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
[Crossref] [PubMed]

I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express 20(10), 11241–11246 (2012).
[Crossref] [PubMed]

G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J.-H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20(11), 12035–12039 (2012).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

Q. Fang, X. Tu, J. Song, L. Jia, X. Luo, Y. Yang, M. Yu, and G. Lo, “PN-type carrier-induced filter with modulatable extinction ratio,” Opt. Express 22(24), 29914–29920 (2014).
[Crossref] [PubMed]

S. Khan and S. Fathpour, “Demonstration of tunable optical delay lines based on apodized grating waveguides,” Opt. Express 21(17), 19538–19543 (2013).
[Crossref] [PubMed]

A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. Larochelle, “Characterization and reduction of spectral distortions in Silicon-on-Insulator integrated Bragg gratings,” Opt. Express 21(20), 23145–23159 (2013).
[Crossref] [PubMed]

S. Yang, Y. Zhang, D. W. Grund, G. A. Ejzak, Y. Liu, A. Novack, D. Prather, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A single adiabatic microring-based laser in 220 nm silicon-on-insulator,” Opt. Express 22(1), 1172–1180 (2014).
[Crossref] [PubMed]

S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22(12), 14166–14179 (2014).
[Crossref] [PubMed]

Opt. Lett. (6)

Other (2)

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

X. Wang, “Silicon photonic waveguide Bragg gratings,” Ph.D. thesis (University of British Columbia, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of the ultra-thin waveguide cross section. (b) Simulated electric field x-component distribution for the fundamental TE-mode. (c) Schematic of the double-layer taper for mode conversion between the 60-nm-thick and the regular 220-nm-thick waveguides.
Fig. 2
Fig. 2 Waveguide propagation loss characterization. Each marker denotes a measured loss for a certain waveguide length. The solid line is linear fitting to the experimental data.
Fig. 3
Fig. 3 (a) SEM image of the grating coupler. (b) Transmission spectrum of a test waveguide with a pair of grating couplers.
Fig. 4
Fig. 4 (a) Microscopic image of the fabricated racetrack microring resonator. Inset shows the zoom-in view of the coupling region. (b) Measured transmission spectra at the through and drop ports for the microring resonator. The inset shows the zoom-in view of the resonance spectra around 1547.5 nm. (c) Intrinsic power loss per round-trip κp2 (black squares) and cross-coupling coefficients κc2 (blue circles) deduced from the resonator spectra. (d) Group index ng (black squares) for the 30-μm-radius bend waveguides. The red dashed line is a linear fitting line.
Fig. 5
Fig. 5 Bending loss of a 180° bend versus the bending radius. The dashed line is the exponential fitting of the experimental data.
Fig. 6
Fig. 6 (a) Schematic structure of the 1 × 2 MMI coupler. (b) Microscopic image of the test structure for MMI couplers. The inset shows the magnified image of a single MMI coupler. (c) Measured transmission spectra at the 8 output ports of the test structure. (d) Output transmission versus number of cascaded MMIs at 1560 nm. (e) Average excess loss of a MMI versus wavelength.
Fig. 7
Fig. 7 (a) Microscopic image of a thermally tunable MZI. Inset shows the magnified view of the micro-heater. (b) Schematic structure of the active MZI arm integrated with a resistive micro-heater. Inset shows the cross-sectional schematic of the active arm. (c) Measured transmission spectrum of the MZI. (d) Group index deduced from the transmission spectrum. The solid line is a linear fitting line. (e) Thermo-optic tuning of MZI spectrum. (f) Waveguide effective refractive index change and phase shift versus thermal power consumption. Inset shows the simulated temperature increment in the MZI arm when the waveguide effective refractive index change is Δneff = 0.0012.
Fig. 8
Fig. 8 (a) Schematic structure of the Bragg grating. (b) SEM image of the Bragg grating. (c) Measured and simulated transmission spectra. (d) Measured and simulated group delay spectra.
Fig. 9
Fig. 9 (a) Transmission intensity spectra of the Bragg grating under various power tuning levels. (b) Wavelength shift as a function of tuning power. (c) Transmission group delay spectra of the Bragg grating under various tuning power levels. (d) Group delay as a function of tuning power at 1618.85 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δφ( λ )=arccos[ 2I(λ)( I max + I min ) I max I min ]
n g ( λ )= λ max λΔφ( λ ) 2πΔL( λ max λ )

Metrics