Abstract

We have investigated the fundamental and high-order spoof localized surface plasmons (LSPs) modes in the proposed corrugated ring resonator printed on a thin dielectric substrate with or without ground plane. An efficient and ease-of-integration method to excite spoof LSPs in the textured ring resonator has been adopted to suppress unwanted high-order modes and enhance fundamental modes. A multi-band-pass filter has been proposed and numerically demonstrated. Experimental results at the microwave frequencies verify the high performances of the corrugated ring resonator and the filter, showing great agreements with the simulation results. We have also shown that the fabricated device is sensitive to the variation of the refraction index of materials under test, even when the material is as thin as paper.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electronically switchable and tunable bandpass filters based on spoof localized surface plasmons

Yong Jin Zhou, Chao Zhang, Liu Yang, and Qian Xun Xiao
J. Opt. Soc. Am. B 34(7) D9-D12 (2017)

Bandwidth tunable microstrip band-stop filters based on localized spoof surface plasmons

Bingzheng Xu, Zhuo Li, Liangliang Liu, Jia Xu, Chen Chen, and Changqing Gu
J. Opt. Soc. Am. B 33(7) 1388-1391 (2016)

Multiband localized spoof plasmons in closed textured cavities

Bingzheng Xu, Zhuo Li, Changqing Gu, Pingping Ning, Liangliang Liu, Zhenyi Niu, and Yongjiu Zhao
Appl. Opt. 53(30) 6950-6953 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  2. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
    [Crossref]
  3. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  4. W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9(1), 485–490 (2009).
    [Crossref] [PubMed]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  6. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  7. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  8. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  9. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [Crossref] [PubMed]
  10. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
    [Crossref] [PubMed]
  11. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
    [Crossref] [PubMed]
  12. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
    [Crossref] [PubMed]
  13. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
    [Crossref] [PubMed]
  14. W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010).
    [Crossref] [PubMed]
  15. Z. Gao, X. F. Zhang, and L. F. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
    [Crossref]
  16. G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys. 13(3), 033024 (2011).
    [Crossref]
  17. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. García-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [Crossref] [PubMed]
  18. X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
    [Crossref]
  19. H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
    [Crossref]
  20. J. J. Wu, J. Hou, K. Liu, L. Shen, C. A. Tsai, C. J. Wu, D. Tsai, and T. J. Yang, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express 22(22), 26777–26787 (2014).
    [Crossref] [PubMed]
  21. X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “High-order modes of spoof surface plasmonic wave transmission on thin metal film structure,” Opt. Express 21(25), 31155–31165 (2013).
    [Crossref] [PubMed]
  22. Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
    [Crossref]
  23. R. Quesada, D. Martín-Cano, F. J. García-Vidal, and J. Bravo-Abad, “Deep-subwavelength negative-index waveguiding enabled by coupled conformal surface plasmons,” Opt. Lett. 39(10), 2990–2993 (2014).
    [Crossref] [PubMed]
  24. I. R. Hooper, B. Tremain, J. A. Dockrey, and A. P. Hibbins, “Massively sub-wavelength guiding of electromagnetic waves,” Sci. Rep. 4, 7495 (2014).
    [Crossref] [PubMed]
  25. H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
    [Crossref]
  26. A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
    [Crossref] [PubMed]
  27. Z. Li, L. L. Liu, C. Q. Gu, P. P. Ning, B. Z. Xu, Z. Y. Niu, and Y. J. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
    [Crossref]
  28. P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
    [Crossref]
  29. X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
    [Crossref]
  30. Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
    [Crossref] [PubMed]
  31. Z. Liao, X. P. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
    [Crossref]
  32. F. Gao, Z. Gao, Y. M. Zhang, X. H. Shi, Z. J. Yang, and B. L. Zhang, “Vertical transport of subwavelength localized surface electromagnetic modes,” Laser Photonics Rev. (posted 20 July 2015).
  33. X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
    [Crossref] [PubMed]
  34. F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, and B. Zhang, “Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances,” Opt. Express 23(5), 6896–6902 (2015).
    [Crossref] [PubMed]
  35. B. Shuppert, “Microstrip/slotline transitions: modeling and experimental investigation,” IEEE Trans. Microw. Theory Tech. 36(8), 1272–1282 (1988).
    [Crossref]
  36. K. C. Gupta, R. Garg, and P. Bhartia, Microstrip Lines and Slotlines (Artech House, 1996).
  37. X. G. Huang, Q. Y. Feng, and Q. Y. Xiang, “High selectivity broadband bandpass filter using stub-loaded quadruple-mode resonator,” J. Electromagnet. Wave. 26(1), 34–43 (2012).
    [Crossref]

2015 (4)

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

Z. Liao, X. P. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, and B. Zhang, “Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances,” Opt. Express 23(5), 6896–6902 (2015).
[Crossref] [PubMed]

2014 (10)

R. Quesada, D. Martín-Cano, F. J. García-Vidal, and J. Bravo-Abad, “Deep-subwavelength negative-index waveguiding enabled by coupled conformal surface plasmons,” Opt. Lett. 39(10), 2990–2993 (2014).
[Crossref] [PubMed]

X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
[Crossref] [PubMed]

J. J. Wu, J. Hou, K. Liu, L. Shen, C. A. Tsai, C. J. Wu, D. Tsai, and T. J. Yang, “Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons,” Opt. Express 22(22), 26777–26787 (2014).
[Crossref] [PubMed]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

Z. Li, L. L. Liu, C. Q. Gu, P. P. Ning, B. Z. Xu, Z. Y. Niu, and Y. J. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

I. R. Hooper, B. Tremain, J. A. Dockrey, and A. P. Hibbins, “Massively sub-wavelength guiding of electromagnetic waves,” Sci. Rep. 4, 7495 (2014).
[Crossref] [PubMed]

2013 (2)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. García-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “High-order modes of spoof surface plasmonic wave transmission on thin metal film structure,” Opt. Express 21(25), 31155–31165 (2013).
[Crossref] [PubMed]

2012 (2)

X. G. Huang, Q. Y. Feng, and Q. Y. Xiang, “High selectivity broadband bandpass filter using stub-loaded quadruple-mode resonator,” J. Electromagnet. Wave. 26(1), 34–43 (2012).
[Crossref]

A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

2011 (1)

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys. 13(3), 033024 (2011).
[Crossref]

2010 (5)

Z. Gao, X. F. Zhang, and L. F. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010).
[Crossref] [PubMed]

2009 (2)

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[Crossref] [PubMed]

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

2008 (3)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
[Crossref] [PubMed]

2006 (1)

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[Crossref]

2005 (2)

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1988 (1)

B. Shuppert, “Microstrip/slotline transitions: modeling and experimental investigation,” IEEE Trans. Microw. Theory Tech. 36(8), 1272–1282 (1988).
[Crossref]

Agrawal, A.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Bartoli, F. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Bravo-Abad, J.

Camargo, P. H. C.

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

Capasso, F.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[Crossref]

Chen, K.

Chen, L. H.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Cheng, Q.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[Crossref]

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[Crossref]

Cuerda, J.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Cui, A.

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys. 13(3), 033024 (2011).
[Crossref]

Cui, T. J.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

Z. Liao, X. P. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. García-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Ding, Y. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Dockrey, J. A.

I. R. Hooper, B. Tremain, J. A. Dockrey, and A. P. Hibbins, “Massively sub-wavelength guiding of electromagnetic waves,” Sci. Rep. 4, 7495 (2014).
[Crossref] [PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Eldaiki, O. M.

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Feng, Q. Y.

X. G. Huang, Q. Y. Feng, and Q. Y. Xiang, “High selectivity broadband bandpass filter using stub-loaded quadruple-mode resonator,” J. Electromagnet. Wave. 26(1), 34–43 (2012).
[Crossref]

Feng, Y.

Fernandez-Dominguez, A. I.

Fernández-Domínguez, A. I.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[Crossref] [PubMed]

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Gan, Q.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

Gao, F.

Gao, X.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Gao, Z.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, and B. Zhang, “Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances,” Opt. Express 23(5), 6896–6902 (2015).
[Crossref] [PubMed]

Z. Gao, X. F. Zhang, and L. F. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
[Crossref]

Garcia-Vidal, F. J.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Gu, C. Q.

Z. Li, L. L. Liu, C. Q. Gu, P. P. Ning, B. Z. Xu, Z. Y. Niu, and Y. J. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Hibbins, A. P.

I. R. Hooper, B. Tremain, J. A. Dockrey, and A. P. Hibbins, “Massively sub-wavelength guiding of electromagnetic waves,” Sci. Rep. 4, 7495 (2014).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Hooper, I. R.

I. R. Hooper, B. Tremain, J. A. Dockrey, and A. P. Hibbins, “Massively sub-wavelength guiding of electromagnetic waves,” Sci. Rep. 4, 7495 (2014).
[Crossref] [PubMed]

Hou, J.

Huang, X. G.

X. G. Huang, Q. Y. Feng, and Q. Y. Xiang, “High selectivity broadband bandpass filter using stub-loaded quadruple-mode resonator,” J. Electromagnet. Wave. 26(1), 34–43 (2012).
[Crossref]

Huidobro, P. A.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Jiang, T.

Jiang, W. X.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[Crossref]

Kumar, G.

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys. 13(3), 033024 (2011).
[Crossref]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Li, L. M.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Li, W.

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

Li, Z.

Z. Li, L. L. Liu, C. Q. Gu, P. P. Ning, B. Z. Xu, Z. Y. Niu, and Y. J. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Liao, Z.

Z. Liao, X. P. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Lin, X.

Liu, K.

Liu, L. L.

Z. Li, L. L. Liu, C. Q. Gu, P. P. Ning, B. Z. Xu, Z. Y. Niu, and Y. J. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Liu, S.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Liu, X.

Lu, X.

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

Lu, Z.

Luo, Y.

Z. Liao, X. P. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Ma, H. F.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Maier, S. A.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

Martin, O. J.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. García-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

Martín-Cano, D.

Martin-Moreno, L.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Martín-Moreno, L.

A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Moreno, E.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Nahata, A.

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys. 13(3), 033024 (2011).
[Crossref]

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
[Crossref] [PubMed]

Nesterov, M. L.

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Ning, P. P.

Z. Li, L. L. Liu, C. Q. Gu, P. P. Ning, B. Z. Xu, Z. Y. Niu, and Y. J. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Niu, Z. Y.

Z. Li, L. L. Liu, C. Q. Gu, P. P. Ning, B. Z. Xu, Z. Y. Niu, and Y. J. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Pan, B. C.

Z. Liao, X. P. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

Pandey, S.

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys. 13(3), 033024 (2011).
[Crossref]

Pendry, J. B.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Pors, A.

A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Quesada, R.

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shen, L.

Shen, L. F.

Z. Gao, X. F. Zhang, and L. F. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
[Crossref]

Shen, X.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. García-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Shen, X. P.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Z. Liao, X. P. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Shi, X.

Shuppert, B.

B. Shuppert, “Microstrip/slotline transitions: modeling and experimental investigation,” IEEE Trans. Microw. Theory Tech. 36(8), 1272–1282 (1988).
[Crossref]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Tremain, B.

I. R. Hooper, B. Tremain, J. A. Dockrey, and A. P. Hibbins, “Massively sub-wavelength guiding of electromagnetic waves,” Sci. Rep. 4, 7495 (2014).
[Crossref] [PubMed]

Tsai, C. A.

Tsai, D.

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Wu, C. J.

Wu, J. J.

Xia, Y.

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

Xiang, Q. Y.

X. G. Huang, Q. Y. Feng, and Q. Y. Xiang, “High selectivity broadband bandpass filter using stub-loaded quadruple-mode resonator,” J. Electromagnet. Wave. 26(1), 34–43 (2012).
[Crossref]

Xu, B. Z.

Z. Li, L. L. Liu, C. Q. Gu, P. P. Ning, B. Z. Xu, Z. Y. Niu, and Y. J. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Yang, R.

Yang, T. J.

Yang, Z.

Zhang, B.

Zhang, H. C.

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

Zhang, X. F.

Z. Gao, X. F. Zhang, and L. F. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
[Crossref]

Zhao, J.

Z. Liao, X. P. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
[Crossref] [PubMed]

X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “High-order modes of spoof surface plasmonic wave transmission on thin metal film structure,” Opt. Express 21(25), 31155–31165 (2013).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhao, W.

Zhao, Y. J.

Z. Li, L. L. Liu, C. Q. Gu, P. P. Ning, B. Z. Xu, Z. Y. Niu, and Y. J. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Zhou, L.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Zhu, B.

Zhu, W.

ACS Photonics (1)

Z. Liao, X. P. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Appl. Phys. Lett. (3)

Z. Li, L. L. Liu, C. Q. Gu, P. P. Ning, B. Z. Xu, Z. Y. Niu, and Y. J. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

B. Shuppert, “Microstrip/slotline transitions: modeling and experimental investigation,” IEEE Trans. Microw. Theory Tech. 36(8), 1272–1282 (1988).
[Crossref]

J. Appl. Phys. (1)

Z. Gao, X. F. Zhang, and L. F. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
[Crossref]

J. Electromagnet. Wave. (1)

X. G. Huang, Q. Y. Feng, and Q. Y. Xiang, “High selectivity broadband bandpass filter using stub-loaded quadruple-mode resonator,” J. Electromagnet. Wave. 26(1), 34–43 (2012).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Liao, J. Zhao, B. C. Pan, X. P. Shen, and T. J. Cui, “Broadband transition between microstrip line and conformal surface plasmon waveguide,” J. Phys. D Appl. Phys. 47(31), 315103 (2014).
[Crossref]

Laser Photonics Rev. (3)

H. C. Zhang, S. Liu, X. P. Shen, L. H. Chen, L. M. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
[Crossref]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. P. Shen and T. J. Cui, “Ultrathin plasmonic metamaterial for spoof localized surface plasmons,” Laser Photonics Rev. 8(1), 137–145 (2014).
[Crossref]

Nano Lett. (2)

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

New J. Phys. (1)

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys. 13(3), 033024 (2011).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008).
[Crossref] [PubMed]

A. Pors, E. Moreno, L. Martín-Moreno, J. B. Pendry, and F. J. García-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Phys. Rev. X (1)

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. García-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Sci. Rep. (2)

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5, 9590 (2015).
[Crossref] [PubMed]

I. R. Hooper, B. Tremain, J. A. Dockrey, and A. P. Hibbins, “Massively sub-wavelength guiding of electromagnetic waves,” Sci. Rep. 4, 7495 (2014).
[Crossref] [PubMed]

Science (4)

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Other (2)

F. Gao, Z. Gao, Y. M. Zhang, X. H. Shi, Z. J. Yang, and B. L. Zhang, “Vertical transport of subwavelength localized surface electromagnetic modes,” Laser Photonics Rev. (posted 20 July 2015).

K. C. Gupta, R. Garg, and P. Bhartia, Microstrip Lines and Slotlines (Artech House, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The calculated ECS spectrum for the proposed thin textured ring resonator printed on the dielectric substrate. The inset shows the schematic configuration of the structure under the excitation of a plane wave. (b) The near field response for the structure with ground plane. The inset shows the schematic configuration of the structure with ground under the excitation of a monopole source. The 2D electric-field distributions on the plane 2 mm above the ring resonator at the resonant frequencies marked by m 1-m 4 and M1-M3: (c) for the structure without ground; (d) for the structure with ground.
Fig. 2
Fig. 2 (a) Dispersion relations of spoof SPs on the symmetric corrugated strips without ground. The black dash line indicates the light line. The inset shows the unit cell of the symmetric corrugated strips without ground. (b) The change of dispersion curves for symmetric corrugated structure with ground with different groove heights and substrate thicknesses.
Fig. 3
Fig. 3 (a) The schematic picture of the proposed corrugated ring resonator excited by a microstrip line. The change of S 11 curves with (b) length l of the microstrip line, (c) radius r 1 of metal disk at the end of the microstrip line. (d) The calculated S 11 of the corrugated ring resonator by use of CST and HFSS. The blue short dash dot line is the fitting result from the CST simulation result using Origin multiple peaks curve fitting method. (e) 2D E z-field distributions on the plane 2 mm above the corrugated ring resonator at the resonant frequencies m 1-m 7.
Fig. 4
Fig. 4 (a) The experimental setup. The inset is the photograph of the enlarged measurement arrangements including the fabricated sample, detecting probe and feeding cable. (b) The measured and simulated S 11. (c) The measured 2D E z-field distributions at the resonance frequencies located at 1.25, 2.45, 3.55, 4.55, 5.40, 6.07, and 6.65 GHz, respectively.
Fig. 5
Fig. 5 (a) The schematic picture of the proposed multi-band-pass filter. (b) The fabricated sample which is assembled by the top and bottom monolayer. The simulated and measured (c) reflection coefficients and (d) transmission coefficients.
Fig. 6
Fig. 6 (a) The change of calculated S 11 with the refractive index (n) of the detected material. (b) The change of calculated S 21 with n. (c) The schematic picture of measuring apparatus, where a piece of paper is put between top and bottom layer of the fabricated sample. (d) The measured S 11 with or without paper.

Metrics