Abstract

Measurements of ocean color from Geostationary Ocean Color Imager (GOCI) with a moderate spatial resolution and a high temporal frequency demonstrate high value for a number of oceanographic applications. This study aims to propose and evaluate the calibration of GOCI as needed to achieve the level of radiometric accuracy desired for ocean color studies. Previous studies reported that the GOCI retrievals of normalized water-leaving radiances (nLw) are biased high for all visible bands due to the lack of vicarious calibration. The vicarious calibration approach described here relies on the assumed constant aerosol characteristics over the open-ocean sites to accurately estimate atmospheric radiances for the two near-infrared (NIR) bands. The vicarious calibration of visible bands is performed using in situ nLw measurements and the satellite-estimated atmospheric radiance using two NIR bands over the case-1 waters. Prior to this analysis, the in situ nLw spectra in the NIR are corrected by the spectrum optimization technique based on the NIR similarity spectrum assumption. The vicarious calibration gain factors derived for all GOCI bands (except 865nm) significantly improve agreement in retrieved remote-sensing reflectance (Rrs) relative to in situ measurements. These gain factors are independent of angular geometry and possible temporal variability. To further increase the confidence in the calibration gain factors, a large data set from shipboard measurements and AERONET-OC is used in the validation process. It is shown that the absolute percentage difference of the atmospheric correction results from the vicariously calibrated GOCI system is reduced by ~6.8%.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry

Bryan A. Franz, Sean W. Bailey, P. Jeremy Werdell, and Charles R. McClain
Appl. Opt. 46(22) 5068-5082 (2007)

NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors

Menghua Wang, Wei Shi, Lide Jiang, and Kenneth Voss
Opt. Express 24(18) 20437-20453 (2016)

Vicarious calibration of satellite ocean color sensors at two coastal sites

Frédéric Mélin and Giuseppe Zibordi
Appl. Opt. 49(5) 798-810 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46(22), 5068–5082 (2007).
    [Crossref] [PubMed]
  2. H. R. Gordon, “In-orbit calibration strategy for ocean color sensors,” Remote Sens. Environ. 63(3), 265–278 (1998).
    [Crossref]
  3. R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, “Calibration of SeaWiFS. II. Vicarious techniques,” Appl. Opt. 40(36), 6701–6718 (2001).
    [Crossref] [PubMed]
  4. M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared,” Remote Sens. Environ. 82(2-3), 497–504 (2002).
    [Crossref]
  5. H. Murakami, M. Yoshida, K. Tanaka, H. Fukushima, M. Toratani, A. Tanaka, and Y. Senga, “Vicarious calibration of ADEOS-2 GLI visible to shortwave infrared bands using global datasets,” IEEE Trans. Geosci. Rem. Sens. 43(7), 1571–1584 (2005).
    [Crossref]
  6. C. Lerebourg, C. Mazeran, J. Huot, and D. Antoine, “Vicarious adjustment of the MERIS ocean colour radiometry,” MERIS ATBD 2.24. ACRI (2011).
  7. P. J. Werdell, S. W. Bailey, B. A. Franz, A. Morel, and C. R. McClain, “On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model,” Appl. Opt. 46(23), 5649–5666 (2007).
    [Crossref] [PubMed]
  8. M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
    [Crossref] [PubMed]
  9. M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impacts of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
    [Crossref]
  10. G. Kang, P. Coste, H. Youn, F. Faure, and S. Choi, “An in-orbit radiometric calibration method of the geostationary ocean color imager,” IEEE Trans. Geosci. Rem. Sens. 48(12), 4322–4328 (2010).
    [Crossref]
  11. J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
    [Crossref]
  12. J.-E. Moon, Y.-J. Park, J.-H. Ryu, J.-K. Choi, J.-H. Ahn, J.-E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.-H. Ahn, “Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011,” Ocean Sci. J. 47(3), 261–277 (2012).
    [Crossref]
  13. J. H. Ahn, Y. J. Park, J. H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
    [Crossref]
  14. C. Hu, L. Feng, and Z. Lee, “Evaluation of GOCI sensitivity for at-sensor radiance and GDPS-retrieved chlorophyll-a products,” Ocean Sci. J. 47(3), 279–285 (2012).
    [Crossref]
  15. J. S. Shim, I. S. Chun, and I. K. Min, “Construction of Ieodo Ocean Research Station and its operation,” in 14th Int. Offshore and Polar Engineering Conference (2004), pp. 23–28.
  16. M. Wang and H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
    [Crossref]
  17. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
    [Crossref] [PubMed]
  18. IOCCG, “Atmospheric correction for remotely-sensed ocean-colour products,” M. Wang (Ed.), Reports of International Ocean-Colour Coordinating Group, No. 10, IOCCG, Dartmouth, Canada (2010).
  19. R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near‐infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
    [Crossref]
  20. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954).
    [Crossref]
  21. H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27(5), 862–871 (1988).
    [Crossref] [PubMed]
  22. H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
    [Crossref] [PubMed]
  23. M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
    [Crossref]
  24. M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
    [Crossref]
  25. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
    [Crossref] [PubMed]
  26. J. L. Mueller, C. Davis, R. Arnone, R. Frouin, K. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and S. McLean, “Above-water radiance and remote sensing reflectance measurements and analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation Revision 2, 98–107 (2000).
  27. Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the quasi-analytical algorithm (QAA_v5),” International Ocean Color Group Software Report (2009).
  28. K. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
    [Crossref]
  29. M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
    [Crossref] [PubMed]
  30. A. Morel, B. Gentili, and D. Antoine, “Assessing the Atmospheric and Marine Signal from a Geostationary Orbit (part II),” COMS Ocean Data Processing System Development Project (3) (2005)
  31. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41(30), 6289–6306 (2002).
    [Crossref] [PubMed]
  32. E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79–0214, (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  33. W. Kim, J. H. Ahn, and Y. J. Park, “Correction of stray light driven inter Slot Radiometric Discrepancy (ISRD) present in radiometric products of Geostationary Ocean Color Imager (GOCI),” IEEE Trans. Geosci. Rem. Sens. 53(10), 5458–5472 (2015).
    [Crossref]
  34. E. Vermote, D. Tanré, J. L. Deuzé, M. Herman, J. J. Morcrette, and S. Y. Kotchenova, “Second simulation of a satellite signal in the solar spectrum-vector (6SV),” 6S User Guide Version3, (2006).
  35. G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
    [Crossref]
  36. G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
    [Crossref]
  37. M. Wang, W. Shi, L. Jiang, X. Liu, S. Son, and K. Voss, “Technique for monitoring performance of VIIRS reflective solar bands for ocean color data processing,” Opt. Express 23(11), 14446–14460 (2015).
    [Crossref] [PubMed]
  38. Y. J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44(7), 1236–1249 (2005).
    [Crossref] [PubMed]
  39. Z. P. Lee, K. Du, K. J. Voss, G. Zibordi, B. Lubac, R. Arnone, and A. Weidemann, “An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance,” Appl. Opt. 50(19), 3155–3167 (2011).
    [Crossref] [PubMed]
  40. C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
    [Crossref]
  41. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
    [Crossref] [PubMed]
  42. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
    [Crossref] [PubMed]
  43. R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” SeaWiFS Postlaunch Technical Report Series 22, 51–59 (2003).
  44. M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).
    [Crossref] [PubMed]
  45. M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region,” Opt. Express 20(2), 741–753 (2012).
    [Crossref] [PubMed]
  46. C. Goyens, C. Jamet, and K. G. Ruddick, “Spectral relationships for atmospheric correction. II. Improving NASA’s standard and MUMM near infra-red modeling schemes,” Opt. Express 21(18), 21176–21187 (2013).
    [Crossref] [PubMed]
  47. C. Goyens, C. Jamet, and K. G. Ruddick, “Spectral relationships for atmospheric correction. I. Validation of red and near infra-red marine reflectance relationships,” Opt. Express 21(18), 21162–21175 (2013).
    [Crossref] [PubMed]
  48. M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
    [Crossref]
  49. C. D. Mobley and L. K. Sundman, “Hydrolight 5 Ecolight 5 technical documentation,” Sequoia Scientific, Incorporated (2008).
  50. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20(2), 177–184 (1981).
    [Crossref] [PubMed]
  51. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
    [Crossref] [PubMed]
  52. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,” Appl. Opt. 32(19), 3531–3540 (1993).
    [Crossref] [PubMed]
  53. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
    [Crossref]
  54. H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: A reexamination,” Limnol. Oceanogr. 43(5), 847–858 (1998).
    [Crossref]
  55. Y. H. Ahn, “Optical properties of biogenous and mineral particles present in the ocean. Application: inversion of reflectance,” Ph.D. dissertation (Paris-VI University, 1990).

2015 (2)

W. Kim, J. H. Ahn, and Y. J. Park, “Correction of stray light driven inter Slot Radiometric Discrepancy (ISRD) present in radiometric products of Geostationary Ocean Color Imager (GOCI),” IEEE Trans. Geosci. Rem. Sens. 53(10), 5458–5472 (2015).
[Crossref]

M. Wang, W. Shi, L. Jiang, X. Liu, S. Son, and K. Voss, “Technique for monitoring performance of VIIRS reflective solar bands for ocean color data processing,” Opt. Express 23(11), 14446–14460 (2015).
[Crossref] [PubMed]

2013 (4)

2012 (5)

J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
[Crossref]

J.-E. Moon, Y.-J. Park, J.-H. Ryu, J.-K. Choi, J.-H. Ahn, J.-E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.-H. Ahn, “Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011,” Ocean Sci. J. 47(3), 261–277 (2012).
[Crossref]

J. H. Ahn, Y. J. Park, J. H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
[Crossref]

C. Hu, L. Feng, and Z. Lee, “Evaluation of GOCI sensitivity for at-sensor radiance and GDPS-retrieved chlorophyll-a products,” Ocean Sci. J. 47(3), 279–285 (2012).
[Crossref]

M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region,” Opt. Express 20(2), 741–753 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

G. Kang, P. Coste, H. Youn, F. Faure, and S. Choi, “An in-orbit radiometric calibration method of the geostationary ocean color imager,” IEEE Trans. Geosci. Rem. Sens. 48(12), 4322–4328 (2010).
[Crossref]

2009 (1)

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

2007 (3)

2006 (3)

M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
[Crossref] [PubMed]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
[Crossref]

K. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

2005 (3)

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[Crossref]

H. Murakami, M. Yoshida, K. Tanaka, H. Fukushima, M. Toratani, A. Tanaka, and Y. Senga, “Vicarious calibration of ADEOS-2 GLI visible to shortwave infrared bands using global datasets,” IEEE Trans. Geosci. Rem. Sens. 43(7), 1571–1584 (2005).
[Crossref]

Y. J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44(7), 1236–1249 (2005).
[Crossref] [PubMed]

2002 (3)

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41(30), 6289–6306 (2002).
[Crossref] [PubMed]

M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared,” Remote Sens. Environ. 82(2-3), 497–504 (2002).
[Crossref]

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[Crossref]

2001 (1)

2000 (3)

1999 (1)

1998 (2)

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: A reexamination,” Limnol. Oceanogr. 43(5), 847–858 (1998).
[Crossref]

H. R. Gordon, “In-orbit calibration strategy for ocean color sensors,” Remote Sens. Environ. 63(3), 265–278 (1998).
[Crossref]

1997 (1)

1996 (1)

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near‐infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[Crossref]

1994 (2)

M. Wang and H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
[Crossref]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

1993 (1)

1992 (1)

1988 (2)

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27(5), 862–871 (1988).
[Crossref] [PubMed]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
[Crossref]

1981 (1)

1954 (1)

Ahn, J. H.

W. Kim, J. H. Ahn, and Y. J. Park, “Correction of stray light driven inter Slot Radiometric Discrepancy (ISRD) present in radiometric products of Geostationary Ocean Color Imager (GOCI),” IEEE Trans. Geosci. Rem. Sens. 53(10), 5458–5472 (2015).
[Crossref]

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[Crossref] [PubMed]

J. H. Ahn, Y. J. Park, J. H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
[Crossref]

Ahn, J.-H.

J.-E. Moon, Y.-J. Park, J.-H. Ryu, J.-K. Choi, J.-H. Ahn, J.-E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.-H. Ahn, “Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011,” Ocean Sci. J. 47(3), 261–277 (2012).
[Crossref]

Ahn, Y. H.

J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
[Crossref]

Ahn, Y.-H.

J.-E. Moon, Y.-J. Park, J.-H. Ryu, J.-K. Choi, J.-H. Ahn, J.-E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.-H. Ahn, “Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011,” Ocean Sci. J. 47(3), 261–277 (2012).
[Crossref]

Al Mandoos, A.

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
[Crossref]

Antoine, D.

Arnone, R.

Babin, M.

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[Crossref]

Bailey, S. W.

Baker, K. S.

Barnes, R. A.

Bélanger, S.

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[Crossref]

Berthon, J. F.

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
[Crossref]

Brown, J. W.

Carder, K. L.

C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[Crossref]

Cho, S.

J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
[Crossref]

Choi, J.-K.

J.-E. Moon, Y.-J. Park, J.-H. Ryu, J.-K. Choi, J.-H. Ahn, J.-E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.-H. Ahn, “Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011,” Ocean Sci. J. 47(3), 261–277 (2012).
[Crossref]

Choi, S.

G. Kang, P. Coste, H. Youn, F. Faure, and S. Choi, “An in-orbit radiometric calibration method of the geostationary ocean color imager,” IEEE Trans. Geosci. Rem. Sens. 48(12), 4322–4328 (2010).
[Crossref]

Chun, I. S.

J. S. Shim, I. S. Chun, and I. K. Min, “Construction of Ieodo Ocean Research Station and its operation,” in 14th Int. Offshore and Polar Engineering Conference (2004), pp. 23–28.

Chylek, P.

Clark, D. K.

Coste, P.

G. Kang, P. Coste, H. Youn, F. Faure, and S. Choi, “An in-orbit radiometric calibration method of the geostationary ocean color imager,” IEEE Trans. Geosci. Rem. Sens. 48(12), 4322–4328 (2010).
[Crossref]

Cox, C.

D’alimonte, D.

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

De Cauwer, V.

K. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Deschamps, P. Y.

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near‐infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[Crossref]

Deuzé, J. L.

E. Vermote, D. Tanré, J. L. Deuzé, M. Herman, J. J. Morcrette, and S. Y. Kotchenova, “Second simulation of a satellite signal in the solar spectrum-vector (6SV),” 6S User Guide Version3, (2006).

Doron, M.

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[Crossref]

Doxaran, D.

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[Crossref]

Du, K.

Eplee, R. E.

Evans, R. H.

Fabbri, B. E.

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

Faure, F.

G. Kang, P. Coste, H. Youn, F. Faure, and S. Choi, “An in-orbit radiometric calibration method of the geostationary ocean color imager,” IEEE Trans. Geosci. Rem. Sens. 48(12), 4322–4328 (2010).
[Crossref]

Feng, H.

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
[Crossref]

Feng, L.

C. Hu, L. Feng, and Z. Lee, “Evaluation of GOCI sensitivity for at-sensor radiance and GDPS-retrieved chlorophyll-a products,” Ocean Sci. J. 47(3), 279–285 (2012).
[Crossref]

Franz, B. A.

Frouin, R.

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near‐infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[Crossref]

Fry, E. S.

Fukushima, H.

H. Murakami, M. Yoshida, K. Tanaka, H. Fukushima, M. Toratani, A. Tanaka, and Y. Senga, “Vicarious calibration of ADEOS-2 GLI visible to shortwave infrared bands using global datasets,” IEEE Trans. Geosci. Rem. Sens. 43(7), 1571–1584 (2005).
[Crossref]

Gentili, B.

Giles, D.

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
[Crossref]

Gordon, H. R.

M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared,” Remote Sens. Environ. 82(2-3), 497–504 (2002).
[Crossref]

H. R. Gordon, “In-orbit calibration strategy for ocean color sensors,” Remote Sens. Environ. 63(3), 265–278 (1998).
[Crossref]

M. Wang and H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
[Crossref]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
[Crossref] [PubMed]

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27(5), 862–871 (1988).
[Crossref] [PubMed]

Goyens, C.

Han, H. J.

J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
[Crossref]

Han, H.-J.

J.-E. Moon, Y.-J. Park, J.-H. Ryu, J.-K. Choi, J.-H. Ahn, J.-E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.-H. Ahn, “Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011,” Ocean Sci. J. 47(3), 261–277 (2012).
[Crossref]

Herman, M.

E. Vermote, D. Tanré, J. L. Deuzé, M. Herman, J. J. Morcrette, and S. Y. Kotchenova, “Second simulation of a satellite signal in the solar spectrum-vector (6SV),” 6S User Guide Version3, (2006).

Holben, B.

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
[Crossref]

Hooker, S. B.

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
[Crossref]

Hu, C.

C. Hu, L. Feng, and Z. Lee, “Evaluation of GOCI sensitivity for at-sensor radiance and GDPS-retrieved chlorophyll-a products,” Ocean Sci. J. 47(3), 279–285 (2012).
[Crossref]

C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[Crossref]

Jamet, C.

Jiang, L.

Kaitala, S.

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

Kang, G.

G. Kang, P. Coste, H. Youn, F. Faure, and S. Choi, “An in-orbit radiometric calibration method of the geostationary ocean color imager,” IEEE Trans. Geosci. Rem. Sens. 48(12), 4322–4328 (2010).
[Crossref]

Kim, W.

W. Kim, J. H. Ahn, and Y. J. Park, “Correction of stray light driven inter Slot Radiometric Discrepancy (ISRD) present in radiometric products of Geostationary Ocean Color Imager (GOCI),” IEEE Trans. Geosci. Rem. Sens. 53(10), 5458–5472 (2015).
[Crossref]

Kotchenova, S. Y.

E. Vermote, D. Tanré, J. L. Deuzé, M. Herman, J. J. Morcrette, and S. Y. Kotchenova, “Second simulation of a satellite signal in the solar spectrum-vector (6SV),” 6S User Guide Version3, (2006).

Kou, L.

Labrie, D.

Lee, B.

J. H. Ahn, Y. J. Park, J. H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
[Crossref]

Lee, S.-J.

J.-E. Moon, Y.-J. Park, J.-H. Ryu, J.-K. Choi, J.-H. Ahn, J.-E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.-H. Ahn, “Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011,” Ocean Sci. J. 47(3), 261–277 (2012).
[Crossref]

Lee, Z.

C. Hu, L. Feng, and Z. Lee, “Evaluation of GOCI sensitivity for at-sensor radiance and GDPS-retrieved chlorophyll-a products,” Ocean Sci. J. 47(3), 279–285 (2012).
[Crossref]

Lee, Z. P.

Liu, X.

M. Wang, W. Shi, L. Jiang, X. Liu, S. Son, and K. Voss, “Technique for monitoring performance of VIIRS reflective solar bands for ocean color data processing,” Opt. Express 23(11), 14446–14460 (2015).
[Crossref] [PubMed]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impacts of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Loisel, H.

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: A reexamination,” Limnol. Oceanogr. 43(5), 847–858 (1998).
[Crossref]

Lubac, B.

Maritorena, S.

McClain, C. R.

Mélin, F.

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
[Crossref]

Min, I. K.

J. S. Shim, I. S. Chun, and I. K. Min, “Construction of Ieodo Ocean Research Station and its operation,” in 14th Int. Offshore and Polar Engineering Conference (2004), pp. 23–28.

Min, J.-E.

J.-E. Moon, Y.-J. Park, J.-H. Ryu, J.-K. Choi, J.-H. Ahn, J.-E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.-H. Ahn, “Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011,” Ocean Sci. J. 47(3), 261–277 (2012).
[Crossref]

Mobley, C. D.

Moon, J.-E.

J.-E. Moon, Y.-J. Park, J.-H. Ryu, J.-K. Choi, J.-H. Ahn, J.-E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.-H. Ahn, “Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011,” Ocean Sci. J. 47(3), 261–277 (2012).
[Crossref]

Moore, G.

K. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Morcrette, J. J.

E. Vermote, D. Tanré, J. L. Deuzé, M. Herman, J. J. Morcrette, and S. Y. Kotchenova, “Second simulation of a satellite signal in the solar spectrum-vector (6SV),” 6S User Guide Version3, (2006).

Morel, A.

P. J. Werdell, S. W. Bailey, B. A. Franz, A. Morel, and C. R. McClain, “On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model,” Appl. Opt. 46(23), 5649–5666 (2007).
[Crossref] [PubMed]

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41(30), 6289–6306 (2002).
[Crossref] [PubMed]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: A reexamination,” Limnol. Oceanogr. 43(5), 847–858 (1998).
[Crossref]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
[Crossref]

Muller-Karger, F. E.

C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[Crossref]

Munk, W.

Murakami, H.

H. Murakami, M. Yoshida, K. Tanaka, H. Fukushima, M. Toratani, A. Tanaka, and Y. Senga, “Vicarious calibration of ADEOS-2 GLI visible to shortwave infrared bands using global datasets,” IEEE Trans. Geosci. Rem. Sens. 43(7), 1571–1584 (2005).
[Crossref]

Oh, I. S.

J. H. Ahn, Y. J. Park, J. H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
[Crossref]

Ovidio, F.

Park, Y. J.

W. Kim, J. H. Ahn, and Y. J. Park, “Correction of stray light driven inter Slot Radiometric Discrepancy (ISRD) present in radiometric products of Geostationary Ocean Color Imager (GOCI),” IEEE Trans. Geosci. Rem. Sens. 53(10), 5458–5472 (2015).
[Crossref]

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[Crossref] [PubMed]

J. H. Ahn, Y. J. Park, J. H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
[Crossref]

J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
[Crossref]

K. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Y. J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44(7), 1236–1249 (2005).
[Crossref] [PubMed]

Park, Y.-J.

J.-E. Moon, Y.-J. Park, J.-H. Ryu, J.-K. Choi, J.-H. Ahn, J.-E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.-H. Ahn, “Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011,” Ocean Sci. J. 47(3), 261–277 (2012).
[Crossref]

Pope, R. M.

Rausch, K.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impacts of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Rijkeboer, M.

Robinson, W.

Robinson, W. D.

Ruddick, K.

K. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

Y. J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44(7), 1236–1249 (2005).
[Crossref] [PubMed]

Ruddick, K. G.

Rutledge, K.

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
[Crossref]

Ryu, J. H.

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[Crossref] [PubMed]

J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
[Crossref]

J. H. Ahn, Y. J. Park, J. H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
[Crossref]

Ryu, J.-H.

J.-E. Moon, Y.-J. Park, J.-H. Ryu, J.-K. Choi, J.-H. Ahn, J.-E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.-H. Ahn, “Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011,” Ocean Sci. J. 47(3), 261–277 (2012).
[Crossref]

Schuster, G.

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
[Crossref]

Schwindling, M.

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near‐infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[Crossref]

Senga, Y.

H. Murakami, M. Yoshida, K. Tanaka, H. Fukushima, M. Toratani, A. Tanaka, and Y. Senga, “Vicarious calibration of ADEOS-2 GLI visible to shortwave infrared bands using global datasets,” IEEE Trans. Geosci. Rem. Sens. 43(7), 1571–1584 (2005).
[Crossref]

Seppälä, J.

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

Shi, W.

Shim, J. S.

J. S. Shim, I. S. Chun, and I. K. Min, “Construction of Ieodo Ocean Research Station and its operation,” in 14th Int. Offshore and Polar Engineering Conference (2004), pp. 23–28.

Siegel, D. A.

Slutsker, I.

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
[Crossref]

Smith, R. C.

Son, S.

Son, Y.-B.

J.-E. Moon, Y.-J. Park, J.-H. Ryu, J.-K. Choi, J.-H. Ahn, J.-E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.-H. Ahn, “Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011,” Ocean Sci. J. 47(3), 261–277 (2012).
[Crossref]

Tan, L.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impacts of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Tanaka, A.

H. Murakami, M. Yoshida, K. Tanaka, H. Fukushima, M. Toratani, A. Tanaka, and Y. Senga, “Vicarious calibration of ADEOS-2 GLI visible to shortwave infrared bands using global datasets,” IEEE Trans. Geosci. Rem. Sens. 43(7), 1571–1584 (2005).
[Crossref]

Tanaka, K.

H. Murakami, M. Yoshida, K. Tanaka, H. Fukushima, M. Toratani, A. Tanaka, and Y. Senga, “Vicarious calibration of ADEOS-2 GLI visible to shortwave infrared bands using global datasets,” IEEE Trans. Geosci. Rem. Sens. 43(7), 1571–1584 (2005).
[Crossref]

Tanré, D.

E. Vermote, D. Tanré, J. L. Deuzé, M. Herman, J. J. Morcrette, and S. Y. Kotchenova, “Second simulation of a satellite signal in the solar spectrum-vector (6SV),” 6S User Guide Version3, (2006).

Toratani, M.

H. Murakami, M. Yoshida, K. Tanaka, H. Fukushima, M. Toratani, A. Tanaka, and Y. Senga, “Vicarious calibration of ADEOS-2 GLI visible to shortwave infrared bands using global datasets,” IEEE Trans. Geosci. Rem. Sens. 43(7), 1571–1584 (2005).
[Crossref]

Vandemark, D.

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
[Crossref]

Vermote, E.

E. Vermote, D. Tanré, J. L. Deuzé, M. Herman, J. J. Morcrette, and S. Y. Kotchenova, “Second simulation of a satellite signal in the solar spectrum-vector (6SV),” 6S User Guide Version3, (2006).

Voss, K.

M. Wang, W. Shi, L. Jiang, X. Liu, S. Son, and K. Voss, “Technique for monitoring performance of VIIRS reflective solar bands for ocean color data processing,” Opt. Express 23(11), 14446–14460 (2015).
[Crossref] [PubMed]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impacts of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

Voss, K. J.

Wang, M.

M. Wang, W. Shi, L. Jiang, X. Liu, S. Son, and K. Voss, “Technique for monitoring performance of VIIRS reflective solar bands for ocean color data processing,” Opt. Express 23(11), 14446–14460 (2015).
[Crossref] [PubMed]

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[Crossref] [PubMed]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impacts of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region,” Opt. Express 20(2), 741–753 (2012).
[Crossref] [PubMed]

M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).
[Crossref] [PubMed]

M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
[Crossref] [PubMed]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[Crossref]

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[Crossref]

M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared,” Remote Sens. Environ. 82(2-3), 497–504 (2002).
[Crossref]

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, “Calibration of SeaWiFS. II. Vicarious techniques,” Appl. Opt. 40(36), 6701–6718 (2001).
[Crossref] [PubMed]

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
[Crossref] [PubMed]

M. Wang and H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
[Crossref]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
[Crossref] [PubMed]

Weidemann, A.

Werdell, P. J.

Yoshida, M.

H. Murakami, M. Yoshida, K. Tanaka, H. Fukushima, M. Toratani, A. Tanaka, and Y. Senga, “Vicarious calibration of ADEOS-2 GLI visible to shortwave infrared bands using global datasets,” IEEE Trans. Geosci. Rem. Sens. 43(7), 1571–1584 (2005).
[Crossref]

Youn, H.

G. Kang, P. Coste, H. Youn, F. Faure, and S. Choi, “An in-orbit radiometric calibration method of the geostationary ocean color imager,” IEEE Trans. Geosci. Rem. Sens. 48(12), 4322–4328 (2010).
[Crossref]

Zibordi, G.

Z. P. Lee, K. Du, K. J. Voss, G. Zibordi, B. Lubac, R. Arnone, and A. Weidemann, “An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance,” Appl. Opt. 50(19), 3155–3167 (2011).
[Crossref] [PubMed]

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
[Crossref]

Appl. Opt. (16)

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46(22), 5068–5082 (2007).
[Crossref] [PubMed]

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, “Calibration of SeaWiFS. II. Vicarious techniques,” Appl. Opt. 40(36), 6701–6718 (2001).
[Crossref] [PubMed]

P. J. Werdell, S. W. Bailey, B. A. Franz, A. Morel, and C. R. McClain, “On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model,” Appl. Opt. 46(23), 5649–5666 (2007).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27(5), 862–871 (1988).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
[Crossref] [PubMed]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
[Crossref] [PubMed]

M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
[Crossref] [PubMed]

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41(30), 6289–6306 (2002).
[Crossref] [PubMed]

Y. J. Park and K. Ruddick, “Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters,” Appl. Opt. 44(7), 1236–1249 (2005).
[Crossref] [PubMed]

Z. P. Lee, K. Du, K. J. Voss, G. Zibordi, B. Lubac, R. Arnone, and A. Weidemann, “An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance,” Appl. Opt. 50(19), 3155–3167 (2011).
[Crossref] [PubMed]

R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20(2), 177–184 (1981).
[Crossref] [PubMed]

R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
[Crossref] [PubMed]

L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,” Appl. Opt. 32(19), 3531–3540 (1993).
[Crossref] [PubMed]

K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
[Crossref] [PubMed]

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
[Crossref] [PubMed]

Eos Trans. AGU (1)

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J. F. Berthon, I. Slutsker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, G. Schuster, and A. Al Mandoos, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(30), 293–297 (2006).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (3)

W. Kim, J. H. Ahn, and Y. J. Park, “Correction of stray light driven inter Slot Radiometric Discrepancy (ISRD) present in radiometric products of Geostationary Ocean Color Imager (GOCI),” IEEE Trans. Geosci. Rem. Sens. 53(10), 5458–5472 (2015).
[Crossref]

G. Kang, P. Coste, H. Youn, F. Faure, and S. Choi, “An in-orbit radiometric calibration method of the geostationary ocean color imager,” IEEE Trans. Geosci. Rem. Sens. 48(12), 4322–4328 (2010).
[Crossref]

H. Murakami, M. Yoshida, K. Tanaka, H. Fukushima, M. Toratani, A. Tanaka, and Y. Senga, “Vicarious calibration of ADEOS-2 GLI visible to shortwave infrared bands using global datasets,” IEEE Trans. Geosci. Rem. Sens. 43(7), 1571–1584 (2005).
[Crossref]

Int. J. Remote Sens. (2)

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[Crossref]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[Crossref]

J. Atmos. Ocean. Technol. (1)

G. Zibordi, F. Mélin, J. F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

J. Geophys. Res. (2)

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near‐infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[Crossref]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
[Crossref]

J. Geophys. Res. Atmos. (1)

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impacts of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118(18), 10347–10360 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

Limnol. Oceanogr. (2)

K. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[Crossref]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: A reexamination,” Limnol. Oceanogr. 43(5), 847–858 (1998).
[Crossref]

Ocean Sci. J. (4)

J. H. Ryu, H. J. Han, S. Cho, Y. J. Park, and Y. H. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Sci. J. 47(3), 223–233 (2012).
[Crossref]

J.-E. Moon, Y.-J. Park, J.-H. Ryu, J.-K. Choi, J.-H. Ahn, J.-E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.-H. Ahn, “Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011,” Ocean Sci. J. 47(3), 261–277 (2012).
[Crossref]

J. H. Ahn, Y. J. Park, J. H. Ryu, B. Lee, and I. S. Oh, “Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI),” Ocean Sci. J. 47(3), 247–259 (2012).
[Crossref]

C. Hu, L. Feng, and Z. Lee, “Evaluation of GOCI sensitivity for at-sensor radiance and GDPS-retrieved chlorophyll-a products,” Ocean Sci. J. 47(3), 279–285 (2012).
[Crossref]

Opt. Express (6)

Remote Sens. Environ. (5)

M. Doron, S. Bélanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[Crossref]

C. Hu, K. L. Carder, and F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[Crossref]

M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared,” Remote Sens. Environ. 82(2-3), 497–504 (2002).
[Crossref]

H. R. Gordon, “In-orbit calibration strategy for ocean color sensors,” Remote Sens. Environ. 63(3), 265–278 (1998).
[Crossref]

M. Wang and H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
[Crossref]

Other (11)

IOCCG, “Atmospheric correction for remotely-sensed ocean-colour products,” M. Wang (Ed.), Reports of International Ocean-Colour Coordinating Group, No. 10, IOCCG, Dartmouth, Canada (2010).

J. S. Shim, I. S. Chun, and I. K. Min, “Construction of Ieodo Ocean Research Station and its operation,” in 14th Int. Offshore and Polar Engineering Conference (2004), pp. 23–28.

C. Lerebourg, C. Mazeran, J. Huot, and D. Antoine, “Vicarious adjustment of the MERIS ocean colour radiometry,” MERIS ATBD 2.24. ACRI (2011).

E. Vermote, D. Tanré, J. L. Deuzé, M. Herman, J. J. Morcrette, and S. Y. Kotchenova, “Second simulation of a satellite signal in the solar spectrum-vector (6SV),” 6S User Guide Version3, (2006).

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79–0214, (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

A. Morel, B. Gentili, and D. Antoine, “Assessing the Atmospheric and Marine Signal from a Geostationary Orbit (part II),” COMS Ocean Data Processing System Development Project (3) (2005)

J. L. Mueller, C. Davis, R. Arnone, R. Frouin, K. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and S. McLean, “Above-water radiance and remote sensing reflectance measurements and analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation Revision 2, 98–107 (2000).

Z. Lee, B. Lubac, J. Werdell, and R. Arnone, “An update of the quasi-analytical algorithm (QAA_v5),” International Ocean Color Group Software Report (2009).

C. D. Mobley and L. K. Sundman, “Hydrolight 5 Ecolight 5 technical documentation,” Sequoia Scientific, Incorporated (2008).

Y. H. Ahn, “Optical properties of biogenous and mineral particles present in the ocean. Application: inversion of reflectance,” Ph.D. dissertation (Paris-VI University, 1990).

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” SeaWiFS Postlaunch Technical Report Series 22, 51–59 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Locations of in situ radiometric measurements in coastal and open-ocean waters around Korea. A total of 421 samples were collected, and subsequently reduced to 84 (blue diamonds) through strict quality control of both the in situ measurements and GOCI observations. Of these data, only 12 spectra were used in the vicarious calibration process (green squares).
Fig. 2
Fig. 2 Rb correction applied to Rrsm (λ) from clear (a) and turbid (b) waters. Red solid lines represent the corrected Rrs, and black dotted lines indicate uncorrected data directly derived from Eq. (4) with Rb = 0. Grey dashed lines show the results obtained by subtracting the Rrs(755 nm) value from each wavelengths [25].
Fig. 3
Fig. 3 Map of the calibration site of the GOCI NIR bands. Region within the box of 24.8-29.0°N and 132-142°E (red rectangle) in the GOCI coverage is established for the NIR vicarious calibration. The region is selected so as to avoid continental aerosols and slot boundary stray-light effects.
Fig. 4
Fig. 4 Flowchart describing the scheme for estimating the TOA radiance at 745 nm.
Fig. 5
Fig. 5 A flowchart describing the scheme for estimating the TOA radiance in the visible bands
Fig. 6
Fig. 6 Vicarious calibration of the NIR band. L TOA V C ( 745 nm ) / L TOA ( 745 nm ) values are obtained based on calibration samples spanning 2-year period from 2011 to 2012. The mean vicarious calibration gain factor derived for the GOCI NIR band at 745 nm is 0.9613.
Fig. 7
Fig. 7 The spectral plot of vicarious gains. Error bars indicate the standard deviation.
Fig. 8
Fig. 8 Verification of the vicarious calibration gain factors. Red circles and blue squares represent the GOCI and in situ Rrs match-up pairs derived with- and without vicarious calibration, respectively.
Fig. 9
Fig. 9 Validation of the GOCI retrieved Rrs and in situ Rrs. Blue diamonds represent Rrs retrievals without vicarious calibration (implemented in GDPS ver.1.1 and 1.2), and red circles represent Rrs retrievals with vicarious calibration (implemented in GDPS ver.1.3). Rrs spectra used in the vicarious calibration are also included in this validation (cal + val).
Fig. 10
Fig. 10 Validation of the GOCI retrieved Rrs and in situ Rrs from the AERONET-OC. Blue diamonds represent Rrs retrieved using the atmospheric correction without vicarious calibration (implemented in GDPS ver.1.1 and 1.2). Red circles represent Rrs retrievals with vicarious calibration (implemented in GDPS ver.1.3).
Fig. 11
Fig. 11 Flow chart showing the turbid water ρw(NIR) correction scheme for the GOCI standard atmospheric correction. The tdv(λ) term represents the total diffuse transmittance between the sea surface and sensor which can be expressed as t d r v ( λ ) × t d a v ( λ ) .
Fig. 12
Fig. 12 Relationships between ρwn(660 nm) and ρwn(745 nm) and ρwn(865 nm). The dashed line represents the linear relationship from the model of Ruddick et al. [34] that the ratio of ρwn(745 nm) to ρwn(865 nm) is 1.936.
Fig. 13
Fig. 13 Rrs spectral relationships obtained through HYDROLIGHT simulations. For this simulation, the range of chla concentration varied from 0.1~30 mg m−3, CDOM absorption at 440 nm from 0.1~0.3 m−1, and suspended sediment concentration from 0.1~1000 g m−3.
Fig. 14
Fig. 14 Quality control adopted for the AERONET-OC data. (a) Rrs spectra accepted by the quality-control criteria, and (b) Rrs spectra rejected by the scheme because of spurious outliers.

Tables (4)

Tables Icon

Table 1 Vicarious calibration gain factors for GOCI

Tables Icon

Table 2 Statistics from verification of the VIS bands calibration

Tables Icon

Table 3 Statistics of atmospheric correction validation with/without the calibration

Tables Icon

Table 4 Adjusted coefficients (Eq. (19)) for GOCI bands.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

g v c ( λ ) = { n = 1 N [ L TOA V C ( λ ) / L TOA ( λ ) ] } / N ,
L TOA V C ( λ ) = { L r ( λ ) + L a ( λ ) + L r a ( λ ) + t d r v ( λ ) t d a v ( λ ) [ L w V C ( λ ) + L w c ( λ ) ] + T g ( λ ) L g ( λ ) } t o z v ( λ ) t o z s ( λ ) ,
L w ( λ ) = L s e a 0 + ( λ ) f s u r f L s k y ( λ ) L b ( λ ) ,
R r s m ( λ ) = L s e a 0 + ( λ ) f s u r f L s k y ( λ ) E d ( λ ) R b ,
r r s model ( λ ) = 0.089 [ b b ( λ ) a ( λ ) + b b ( λ ) ] + 0.125 [ b b ( λ ) a ( λ ) + b b ( λ ) ] 2 ,
R r s model ( λ ) = 0.52 r r s model ( λ ) 1 1.7 r r s model ( λ )
R r s ( λ ) = R r s m ( λ ) × s ( λ , θ s = 0 , W ) s ( λ , θ s = θ s m , W ) × v ( λ , θ v = 0 , W ) v ( λ , θ v = θ v m , W ) × f ( λ , θ s = 0 , c h l a ) f ( λ , θ s = θ s m , c h l a ) × Q ( λ , θ s = θ s m , θ v = θ v m , ϕ s v = ϕ s v m , c h l a ) Q ( λ , θ s = 0 , θ v = 0 , ϕ s v = 0 , c h l a ) ,
n L w ( λ ) = R r s ( λ ) F 0 ( λ ) ,
L w V C ( λ , θ s m , θ v m , ϕ s v m ) = [ n L w ( λ ) σ ( d y ) cos ( θ s = θ s t ) t d r s ( λ ) t d a s ( λ ) t o z s ( λ ) ] × s ( λ , θ s = θ s t , W ) s ( λ , θ s = 0 , W ) × v ( λ , θ v = θ v t , W ) v ( λ , θ v = 0 , W ) × f ( λ , θ s = θ s t , c h l a ) f ( λ , θ s = 0 , c h l a ) × Q ( λ , θ s = 0 , θ v = 0 , ϕ s v = 0 , c h l a ) Q ( λ , θ s = θ s t , θ v = θ v t , ϕ s v = ϕ s v t , c h l a ) ,
L a ( NIR ) + L r a ( NIR ) = L T O A ( NIR ) t o z s ( λ ) t o z v ( λ ) L r ( NIR ) t d r v ( λ ) L w c ( NIR ) .
ρ a ( NIR ) + ρ r a ( NIR ) = π L a ( NIR ) + L r a ( NIR ) F 0 ( λ ) σ ( d y ) cos ( θ s ) .
ρ a s M ( 865 nm ) = C M forward [ ρ a ( 865 nm ) + ρ r a ( 865 nm ) ] ,
ρ a s M ( 745 nm ) = ε M ( 745 nm , 865 nm ) ρ a s M ( 865 nm ) ,
ρ a V C ( 745 nm ) + ρ r a V C ( 745 nm ) = 0.5 × C M 50 backward [ ρ a s M 50 ( 745 nm ) ] + 0.5 × C M 99 backward [ ρ a s M 99 ( 745 nm ) ] .
L a V C ( 745 nm ) + L r a V C ( 745 nm ) = [ ρ a V C ( 745 nm ) + ρ r a V C ( 745 nm ) ] × F 0 ( 745 nm ) σ ( d y ) cos ( θ s ) / π ,
L TOA V C ( 745 nm ) = [ L r ( 745 nm ) + L a V C ( 745 nm ) + L r a V C ( 745 nm ) ] t o z v ( 745 nm ) t o z s ( 745 nm ) + L w c ( 745 nm ) t o z v ( 745 nm ) t d r v ( 745 nm ) t d a v ( 745 nm ) .
APD = 100 K n = 1 K ( | V T n V E n | V T n ) ,
RMSE = n = 1 K ( V T n V E n ) 2 K ,
s ( λ , θ s = 0 , W = 0 ) s ( λ , θ s , W ) = 1 + i = 1 4 c i ( λ , W ) [ ln ( cos θ s ) ] i .
ρ TOA ( λ ) = ρ r ( λ ) + ρ a ( λ ) + ρ r a ( λ ) + t d r v ( λ ) t d a v ( λ ) ρ w ( λ ) ,
ρ w n ( 745 nm ) = n = 1 4 j n ρ w n ( 660 nm ) n ,
ρ w n ( 865 nm ) = 1.936 ρ w n ( 745 nm ) ,
ρ w n ( λ ) = ρ w ( λ ) t d r s ( λ ) t d a s ( λ ) .
ρ w n ( 660 nm ) = n = 1 5 j n ρ w n ( 745 nm ) n ,
ρ w n ( 865 nm ) = n = 1 2 k n ρ w n ( 745 nm ) n .
R r s ( λ ) = ρ w n ( λ ) π × s ( λ , θ s = 0 , W ) v ( λ , θ v = 0 , W ) s ( λ , θ s , W ) v ( λ , θ v , W ) × f ( λ , θ s = 0 , c h l a ) Q ( λ , θ s , θ v , ϕ s v , c h l a ) Q ( λ , θ s = 0 , θ v = 0 , ϕ s v , c h l a ) f ( λ , θ s , c h l a ) .

Metrics