Abstract

Plano-convex microlens arrays of organic-inorganic polymers with tailored optical properties are presented. The fine-tuning of each microlens within an array is achieved by confining inkjet printed drops of the polymeric ink onto pre-patterned substrates. The lens optical properties are thus freely specified, and high numerical apertures from 0.45 to 0.9 and focal lengths between 10 μm and 100 μm are demonstrated, confirming theoretical predictions. Combining nanoimprint lithography approaches and inkjet printing enables using the same material for the microlenses and their substrates, improving the optical performances. Microlens arrays with desired specifications are printed reaching yields up to 100% and high lens reproducibility with standard deviations of the apparent contact angle under 1° and of the numerical apertures and focal lengths under 6%. Microlens arrays involving lenses with different characteristics, e.g. multi focal length, and thus focal planes separated by only few microns are printed with the same reproducibility.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of polymer microlens array with controllable focal length by modifying surface wettability

Qiao Xu, Bo Dai, Yu Huang, Huansi Wang, Zhuoqing Yang, Kaimin Wang, Songlin Zhuang, and Dawei Zhang
Opt. Express 26(4) 4172-4182 (2018)

Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique

Joo Yeon Kim, Nils B. Brauer, Vahid Fakhfouri, Dmitri L. Boiko, Edoardo Charbon, Gabi Grutzner, and Juergen Brugger
Opt. Mater. Express 1(2) 259-269 (2011)

Geometry-controllable micro-optics with laser catapulting

Salvatore Surdo, Alberto Diaspro, and Martí Duocastella
Opt. Mater. Express 9(7) 2892-2901 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
    [Crossref]
  2. R. Dändliker, S. Gray, F. Clube, H. P. Herzig, and R. Völkel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27(1-4), 205–211 (1995).
    [Crossref]
  3. P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
    [Crossref]
  4. W. R. Cox, C. Guan, and D. J. Hayes, “Microjet printing of micro-optical interconnects and sensors,” Proc. SPIE 3952, 400–407 (2000).
    [Crossref]
  5. V. J. Cadarso, S. Chosson, K. Sidler, R. D. Hersch, and J. Brugger, “High-resolution 1D moirés as counterfeit security features,” Light Sci. Appl. 2(7), e86 (2013).
    [Crossref]
  6. T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
    [Crossref]
  7. Z. D. Popovic, R. A. Sprague, and G. A. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988).
    [Crossref] [PubMed]
  8. E. J. Gratrix, “Evolution of a microlens surface under etching conditions,” Proc. SPIE 8299, 266–274 (1993).
    [Crossref]
  9. S. Haselbeck, M. Eisner, H. Schreiber, and J. Schwider, “Reactive ion etching of microlens arrays into fused silica,” Proc. SPIE 2169, 142–146 (1994).
    [Crossref]
  10. T.-K. Shin, J.-R. Ho, and J.-W. J. Cheng, “A new approach to polymeric microlens array fabrication using soft replica molding,” IEEE Photonics Technol. Lett. 16(9), 2078–2080 (2004).
    [Crossref]
  11. M.-K. Park, H. J. Lee, J.-S. Park, M. Kim, J. M. Bae, I. Mahmud, and H.-R. Kim, “Design and fabrication of multi-focusing microlens array with different numerical apertures by using thermal reflow method,” J. Opt. Soc. Korea 18(1), 71–77 (2014).
    [Crossref]
  12. W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, and E. Wilson, “Fabrication of micro-optics by microjet printing,” Proc. SPIE 2383, 110–115 (1995).
    [Crossref]
  13. W. R. Cox and T. Chen, “Micro-jet printing of refractive microlenses,” (1998).
  14. R. Danzebrink and M. A. Aegerter, “Deposition of optical microlens arrays by ink-jet processes,” Thin Solid Films 392(2), 223–225 (2001).
    [Crossref]
  15. B. Derby, “Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution,” Annu. Rev. Mater. Res. 40(1), 395–414 (2010).
    [Crossref]
  16. V. J. Cadarso, J. Perera-Núñez, L. Jacot-Descombes, K. Pfeiffer, U. Ostrzinski, A. Voigt, A. Llobera, G. Grützer, and J. Brugger, “Microlenses with defined contour shapes,” Opt. Express 19(19), 18665–18670 (2011).
    [Crossref] [PubMed]
  17. L. Jacot-Descombes, A. Schleunitz, J. J. Klein, S. Grützner, F. Bullerjahn, and G. Grützner, “UV-imprinting for the integration of inkjet-printed micro-optical elements,” in Proceedings of the 5. GMM-Workshops Mikro-Nano-Integration (2014), Vol. GMM-FB 81.
  18. B. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
    [Crossref]
  19. C.-T. Chen, C.-L. Chiu, Z.-F. Tseng, and C.-T. Chuang, “Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets,” Sens. Actuators Phys. 147(2), 369–377 (2008).
    [Crossref]
  20. C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
    [Crossref]
  21. J.-P. Lu, W.-K. Huang, and F.-C. Chen, “Self-positioning microlens arrays prepared using ink-jet printing,” Opt. Eng. 48(7), 073606 (2009).
    [Crossref]
  22. L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, and J. Brugger, “Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing,” J. Micromech. Microeng. 22(7), 074012 (2012).
    [Crossref]
  23. L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, O. Ergeneman, C. Peters, P. Fatio, M. A. Freidy, C. Hierold, B. J. Nelson, and J. Brugger, “Inkjet printing of high aspect ratio superparamagnetic SU-8 microstructures with preferential magnetic directions,” Micromachines (Basel) 5(3), 583–593 (2014).
    [Crossref]
  24. V. Fakhfouri, G. Mermoud, J. Y. Kim, A. Martinoli, and J. Brugger, “Drop-on-demand inkjet printing of SU-8 polymer,” Micro Nanosyst. 1(1), 63–67 (2009).
    [Crossref]
  25. A. Voigt, U. Ostrzinski, K. Pfeiffer, J. Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8), 2174–2179 (2011).
    [Crossref]
  26. J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 1(2), 259–269 (2011).
    [Crossref]
  27. M. Russew, J. Klein, M. Vogler, and G. Grützner, micro resist technology GmbH, Köpenicker. Str. 325, Berlin, OrmoComp® (personal communication, 2015), (2015).
  28. H. Schift, “Nanoimprint lithography process chains for the fabrication of micro- and nanodevices,” Proc. SPIE 9049, 90491E (2014).
    [Crossref]
  29. D. Quéré, “Non-sticking drops,” Rep. Prog. Phys. 68(11), 2495–2532 (2005).
    [Crossref]
  30. E. R. Lee, Microdrop Generation, 1st ed. (Chemical Rubber Company, 2002).
  31. L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, and J. Brugger, “Polymeric hemispherical pico-liter micro cups fabricated by inkjet printing,” in Proceedings of IEEE Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2013), pp. 1119–1122.
    [Crossref]
  32. A. U. Chen and O. A. Basaran, “A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production,” Phys. Fluids 14, L1–L4 (2002).
  33. D. Stüwe, D. Mager, D. Biro, and J. G. Korvink, “Inkjet technology for crystalline silicon photovoltaics,” Adv. Mater. 27(4), 599–626 (2015).
    [Crossref] [PubMed]
  34. M. W. Thesen, D. Nees, S. Ruttloff, M. Rumler, M. Rommel, F. Schlachter, S. Grützner, M. Vogler, A. Schleunitz, and G. Grützner, “Inkjetable and photo-curable resists for large-area and high-throughput roll-to-roll nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(4), 043003 (2014).
    [Crossref]
  35. G. Gruetzner, J. Klein, M. Vogler, and A. Schleunitz, “UV-curable hybrid polymers for optical applications: technical challenges, industrial solutions, and future developments,” Proc. SPIE 8974, 897406 (2014).
    [Crossref]
  36. A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, and M. Unser, “Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops,” Colloids Surf. A 364(1-3), 72–81 (2010).
    [Crossref]

2015 (1)

D. Stüwe, D. Mager, D. Biro, and J. G. Korvink, “Inkjet technology for crystalline silicon photovoltaics,” Adv. Mater. 27(4), 599–626 (2015).
[Crossref] [PubMed]

2014 (5)

M. W. Thesen, D. Nees, S. Ruttloff, M. Rumler, M. Rommel, F. Schlachter, S. Grützner, M. Vogler, A. Schleunitz, and G. Grützner, “Inkjetable and photo-curable resists for large-area and high-throughput roll-to-roll nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(4), 043003 (2014).
[Crossref]

G. Gruetzner, J. Klein, M. Vogler, and A. Schleunitz, “UV-curable hybrid polymers for optical applications: technical challenges, industrial solutions, and future developments,” Proc. SPIE 8974, 897406 (2014).
[Crossref]

H. Schift, “Nanoimprint lithography process chains for the fabrication of micro- and nanodevices,” Proc. SPIE 9049, 90491E (2014).
[Crossref]

M.-K. Park, H. J. Lee, J.-S. Park, M. Kim, J. M. Bae, I. Mahmud, and H.-R. Kim, “Design and fabrication of multi-focusing microlens array with different numerical apertures by using thermal reflow method,” J. Opt. Soc. Korea 18(1), 71–77 (2014).
[Crossref]

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, O. Ergeneman, C. Peters, P. Fatio, M. A. Freidy, C. Hierold, B. J. Nelson, and J. Brugger, “Inkjet printing of high aspect ratio superparamagnetic SU-8 microstructures with preferential magnetic directions,” Micromachines (Basel) 5(3), 583–593 (2014).
[Crossref]

2013 (1)

V. J. Cadarso, S. Chosson, K. Sidler, R. D. Hersch, and J. Brugger, “High-resolution 1D moirés as counterfeit security features,” Light Sci. Appl. 2(7), e86 (2013).
[Crossref]

2012 (2)

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, and J. Brugger, “Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing,” J. Micromech. Microeng. 22(7), 074012 (2012).
[Crossref]

2011 (3)

2010 (2)

B. Derby, “Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution,” Annu. Rev. Mater. Res. 40(1), 395–414 (2010).
[Crossref]

A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, and M. Unser, “Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops,” Colloids Surf. A 364(1-3), 72–81 (2010).
[Crossref]

2009 (3)

V. Fakhfouri, G. Mermoud, J. Y. Kim, A. Martinoli, and J. Brugger, “Drop-on-demand inkjet printing of SU-8 polymer,” Micro Nanosyst. 1(1), 63–67 (2009).
[Crossref]

C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
[Crossref]

J.-P. Lu, W.-K. Huang, and F.-C. Chen, “Self-positioning microlens arrays prepared using ink-jet printing,” Opt. Eng. 48(7), 073606 (2009).
[Crossref]

2008 (1)

C.-T. Chen, C.-L. Chiu, Z.-F. Tseng, and C.-T. Chuang, “Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets,” Sens. Actuators Phys. 147(2), 369–377 (2008).
[Crossref]

2005 (1)

D. Quéré, “Non-sticking drops,” Rep. Prog. Phys. 68(11), 2495–2532 (2005).
[Crossref]

2004 (3)

T.-K. Shin, J.-R. Ho, and J.-W. J. Cheng, “A new approach to polymeric microlens array fabrication using soft replica molding,” IEEE Photonics Technol. Lett. 16(9), 2078–2080 (2004).
[Crossref]

B. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

2002 (1)

A. U. Chen and O. A. Basaran, “A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production,” Phys. Fluids 14, L1–L4 (2002).

2001 (1)

R. Danzebrink and M. A. Aegerter, “Deposition of optical microlens arrays by ink-jet processes,” Thin Solid Films 392(2), 223–225 (2001).
[Crossref]

2000 (1)

W. R. Cox, C. Guan, and D. J. Hayes, “Microjet printing of micro-optical interconnects and sensors,” Proc. SPIE 3952, 400–407 (2000).
[Crossref]

1997 (1)

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

1995 (2)

R. Dändliker, S. Gray, F. Clube, H. P. Herzig, and R. Völkel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27(1-4), 205–211 (1995).
[Crossref]

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, and E. Wilson, “Fabrication of micro-optics by microjet printing,” Proc. SPIE 2383, 110–115 (1995).
[Crossref]

1994 (1)

S. Haselbeck, M. Eisner, H. Schreiber, and J. Schwider, “Reactive ion etching of microlens arrays into fused silica,” Proc. SPIE 2169, 142–146 (1994).
[Crossref]

1993 (1)

E. J. Gratrix, “Evolution of a microlens surface under etching conditions,” Proc. SPIE 8299, 266–274 (1993).
[Crossref]

1988 (1)

Aegerter, M. A.

R. Danzebrink and M. A. Aegerter, “Deposition of optical microlens arrays by ink-jet processes,” Thin Solid Films 392(2), 223–225 (2001).
[Crossref]

Bae, J. M.

Basaran, O. A.

A. U. Chen and O. A. Basaran, “A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production,” Phys. Fluids 14, L1–L4 (2002).

Biro, D.

D. Stüwe, D. Mager, D. Biro, and J. G. Korvink, “Inkjet technology for crystalline silicon photovoltaics,” Adv. Mater. 27(4), 599–626 (2015).
[Crossref] [PubMed]

Blu, T.

A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, and M. Unser, “Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops,” Colloids Surf. A 364(1-3), 72–81 (2010).
[Crossref]

Boiko, D. L.

Brauer, N. B.

Brugger, J.

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, O. Ergeneman, C. Peters, P. Fatio, M. A. Freidy, C. Hierold, B. J. Nelson, and J. Brugger, “Inkjet printing of high aspect ratio superparamagnetic SU-8 microstructures with preferential magnetic directions,” Micromachines (Basel) 5(3), 583–593 (2014).
[Crossref]

V. J. Cadarso, S. Chosson, K. Sidler, R. D. Hersch, and J. Brugger, “High-resolution 1D moirés as counterfeit security features,” Light Sci. Appl. 2(7), e86 (2013).
[Crossref]

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, and J. Brugger, “Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing,” J. Micromech. Microeng. 22(7), 074012 (2012).
[Crossref]

A. Voigt, U. Ostrzinski, K. Pfeiffer, J. Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8), 2174–2179 (2011).
[Crossref]

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 1(2), 259–269 (2011).
[Crossref]

V. J. Cadarso, J. Perera-Núñez, L. Jacot-Descombes, K. Pfeiffer, U. Ostrzinski, A. Voigt, A. Llobera, G. Grützer, and J. Brugger, “Microlenses with defined contour shapes,” Opt. Express 19(19), 18665–18670 (2011).
[Crossref] [PubMed]

V. Fakhfouri, G. Mermoud, J. Y. Kim, A. Martinoli, and J. Brugger, “Drop-on-demand inkjet printing of SU-8 polymer,” Micro Nanosyst. 1(1), 63–67 (2009).
[Crossref]

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, and J. Brugger, “Polymeric hemispherical pico-liter micro cups fabricated by inkjet printing,” in Proceedings of IEEE Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2013), pp. 1119–1122.
[Crossref]

Cadarso, V. J.

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, O. Ergeneman, C. Peters, P. Fatio, M. A. Freidy, C. Hierold, B. J. Nelson, and J. Brugger, “Inkjet printing of high aspect ratio superparamagnetic SU-8 microstructures with preferential magnetic directions,” Micromachines (Basel) 5(3), 583–593 (2014).
[Crossref]

V. J. Cadarso, S. Chosson, K. Sidler, R. D. Hersch, and J. Brugger, “High-resolution 1D moirés as counterfeit security features,” Light Sci. Appl. 2(7), e86 (2013).
[Crossref]

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, and J. Brugger, “Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing,” J. Micromech. Microeng. 22(7), 074012 (2012).
[Crossref]

V. J. Cadarso, J. Perera-Núñez, L. Jacot-Descombes, K. Pfeiffer, U. Ostrzinski, A. Voigt, A. Llobera, G. Grützer, and J. Brugger, “Microlenses with defined contour shapes,” Opt. Express 19(19), 18665–18670 (2011).
[Crossref] [PubMed]

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, and J. Brugger, “Polymeric hemispherical pico-liter micro cups fabricated by inkjet printing,” in Proceedings of IEEE Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2013), pp. 1119–1122.
[Crossref]

Charbon, E.

Chen, A. U.

A. U. Chen and O. A. Basaran, “A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production,” Phys. Fluids 14, L1–L4 (2002).

Chen, C.-T.

C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
[Crossref]

C.-T. Chen, C.-L. Chiu, Z.-F. Tseng, and C.-T. Chuang, “Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets,” Sens. Actuators Phys. 147(2), 369–377 (2008).
[Crossref]

Chen, F.-C.

J.-P. Lu, W.-K. Huang, and F.-C. Chen, “Self-positioning microlens arrays prepared using ink-jet printing,” Opt. Eng. 48(7), 073606 (2009).
[Crossref]

Chen, T.

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, and E. Wilson, “Fabrication of micro-optics by microjet printing,” Proc. SPIE 2383, 110–115 (1995).
[Crossref]

W. R. Cox and T. Chen, “Micro-jet printing of refractive microlenses,” (1998).

Cheng, J.-W. J.

T.-K. Shin, J.-R. Ho, and J.-W. J. Cheng, “A new approach to polymeric microlens array fabrication using soft replica molding,” IEEE Photonics Technol. Lett. 16(9), 2078–2080 (2004).
[Crossref]

Chiu, C.-L.

C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
[Crossref]

C.-T. Chen, C.-L. Chiu, Z.-F. Tseng, and C.-T. Chuang, “Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets,” Sens. Actuators Phys. 147(2), 369–377 (2008).
[Crossref]

Choi, H. W.

H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

Chosson, S.

V. J. Cadarso, S. Chosson, K. Sidler, R. D. Hersch, and J. Brugger, “High-resolution 1D moirés as counterfeit security features,” Light Sci. Appl. 2(7), e86 (2013).
[Crossref]

Chuang, C.-T.

C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
[Crossref]

C.-T. Chen, C.-L. Chiu, Z.-F. Tseng, and C.-T. Chuang, “Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets,” Sens. Actuators Phys. 147(2), 369–377 (2008).
[Crossref]

Clube, F.

R. Dändliker, S. Gray, F. Clube, H. P. Herzig, and R. Völkel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27(1-4), 205–211 (1995).
[Crossref]

Connell, G. A.

Cox, W. R.

W. R. Cox, C. Guan, and D. J. Hayes, “Microjet printing of micro-optical interconnects and sensors,” Proc. SPIE 3952, 400–407 (2000).
[Crossref]

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, and E. Wilson, “Fabrication of micro-optics by microjet printing,” Proc. SPIE 2383, 110–115 (1995).
[Crossref]

W. R. Cox and T. Chen, “Micro-jet printing of refractive microlenses,” (1998).

Dändliker, R.

R. Dändliker, S. Gray, F. Clube, H. P. Herzig, and R. Völkel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27(1-4), 205–211 (1995).
[Crossref]

Danzebrink, R.

R. Danzebrink and M. A. Aegerter, “Deposition of optical microlens arrays by ink-jet processes,” Thin Solid Films 392(2), 223–225 (2001).
[Crossref]

Dawson, M. D.

H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

de Gans, B.

B. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

Derby, B.

B. Derby, “Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution,” Annu. Rev. Mater. Res. 40(1), 395–414 (2010).
[Crossref]

Duineveld, P. C.

B. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

Eisner, M.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

S. Haselbeck, M. Eisner, H. Schreiber, and J. Schwider, “Reactive ion etching of microlens arrays into fused silica,” Proc. SPIE 2169, 142–146 (1994).
[Crossref]

Ergeneman, O.

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, O. Ergeneman, C. Peters, P. Fatio, M. A. Freidy, C. Hierold, B. J. Nelson, and J. Brugger, “Inkjet printing of high aspect ratio superparamagnetic SU-8 microstructures with preferential magnetic directions,” Micromachines (Basel) 5(3), 583–593 (2014).
[Crossref]

Fakhfouri, V.

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 1(2), 259–269 (2011).
[Crossref]

A. Voigt, U. Ostrzinski, K. Pfeiffer, J. Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8), 2174–2179 (2011).
[Crossref]

V. Fakhfouri, G. Mermoud, J. Y. Kim, A. Martinoli, and J. Brugger, “Drop-on-demand inkjet printing of SU-8 polymer,” Micro Nanosyst. 1(1), 63–67 (2009).
[Crossref]

Fatio, P.

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, O. Ergeneman, C. Peters, P. Fatio, M. A. Freidy, C. Hierold, B. J. Nelson, and J. Brugger, “Inkjet printing of high aspect ratio superparamagnetic SU-8 microstructures with preferential magnetic directions,” Micromachines (Basel) 5(3), 583–593 (2014).
[Crossref]

Freidy, M. A.

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, O. Ergeneman, C. Peters, P. Fatio, M. A. Freidy, C. Hierold, B. J. Nelson, and J. Brugger, “Inkjet printing of high aspect ratio superparamagnetic SU-8 microstructures with preferential magnetic directions,” Micromachines (Basel) 5(3), 583–593 (2014).
[Crossref]

Georgiev, T.

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

Girkin, J. M.

H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

Gratrix, E. J.

E. J. Gratrix, “Evolution of a microlens surface under etching conditions,” Proc. SPIE 8299, 266–274 (1993).
[Crossref]

Gray, S.

R. Dändliker, S. Gray, F. Clube, H. P. Herzig, and R. Völkel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27(1-4), 205–211 (1995).
[Crossref]

Gruetzner, G.

G. Gruetzner, J. Klein, M. Vogler, and A. Schleunitz, “UV-curable hybrid polymers for optical applications: technical challenges, industrial solutions, and future developments,” Proc. SPIE 8974, 897406 (2014).
[Crossref]

A. Voigt, U. Ostrzinski, K. Pfeiffer, J. Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8), 2174–2179 (2011).
[Crossref]

Grützer, G.

Grutzner, G.

Grützner, G.

M. W. Thesen, D. Nees, S. Ruttloff, M. Rumler, M. Rommel, F. Schlachter, S. Grützner, M. Vogler, A. Schleunitz, and G. Grützner, “Inkjetable and photo-curable resists for large-area and high-throughput roll-to-roll nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(4), 043003 (2014).
[Crossref]

Grützner, S.

M. W. Thesen, D. Nees, S. Ruttloff, M. Rumler, M. Rommel, F. Schlachter, S. Grützner, M. Vogler, A. Schleunitz, and G. Grützner, “Inkjetable and photo-curable resists for large-area and high-throughput roll-to-roll nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(4), 043003 (2014).
[Crossref]

Gu, E.

H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

Guan, C.

W. R. Cox, C. Guan, and D. J. Hayes, “Microjet printing of micro-optical interconnects and sensors,” Proc. SPIE 3952, 400–407 (2000).
[Crossref]

Gullo, M. R.

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, O. Ergeneman, C. Peters, P. Fatio, M. A. Freidy, C. Hierold, B. J. Nelson, and J. Brugger, “Inkjet printing of high aspect ratio superparamagnetic SU-8 microstructures with preferential magnetic directions,” Micromachines (Basel) 5(3), 583–593 (2014).
[Crossref]

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, and J. Brugger, “Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing,” J. Micromech. Microeng. 22(7), 074012 (2012).
[Crossref]

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, and J. Brugger, “Polymeric hemispherical pico-liter micro cups fabricated by inkjet printing,” in Proceedings of IEEE Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2013), pp. 1119–1122.
[Crossref]

Haselbeck, S.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

S. Haselbeck, M. Eisner, H. Schreiber, and J. Schwider, “Reactive ion etching of microlens arrays into fused silica,” Proc. SPIE 2169, 142–146 (1994).
[Crossref]

Hayes, D. J.

W. R. Cox, C. Guan, and D. J. Hayes, “Microjet printing of micro-optical interconnects and sensors,” Proc. SPIE 3952, 400–407 (2000).
[Crossref]

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, and E. Wilson, “Fabrication of micro-optics by microjet printing,” Proc. SPIE 2383, 110–115 (1995).
[Crossref]

Hersch, R. D.

V. J. Cadarso, S. Chosson, K. Sidler, R. D. Hersch, and J. Brugger, “High-resolution 1D moirés as counterfeit security features,” Light Sci. Appl. 2(7), e86 (2013).
[Crossref]

Herzig, H. P.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

R. Dändliker, S. Gray, F. Clube, H. P. Herzig, and R. Völkel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27(1-4), 205–211 (1995).
[Crossref]

Hierold, C.

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, O. Ergeneman, C. Peters, P. Fatio, M. A. Freidy, C. Hierold, B. J. Nelson, and J. Brugger, “Inkjet printing of high aspect ratio superparamagnetic SU-8 microstructures with preferential magnetic directions,” Micromachines (Basel) 5(3), 583–593 (2014).
[Crossref]

Ho, J.-R.

T.-K. Shin, J.-R. Ho, and J.-W. J. Cheng, “A new approach to polymeric microlens array fabrication using soft replica molding,” IEEE Photonics Technol. Lett. 16(9), 2078–2080 (2004).
[Crossref]

Hsu, C.-Y.

C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
[Crossref]

Huang, W.-K.

J.-P. Lu, W.-K. Huang, and F.-C. Chen, “Self-positioning microlens arrays prepared using ink-jet printing,” Opt. Eng. 48(7), 073606 (2009).
[Crossref]

Jacot-Descombes, L.

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, O. Ergeneman, C. Peters, P. Fatio, M. A. Freidy, C. Hierold, B. J. Nelson, and J. Brugger, “Inkjet printing of high aspect ratio superparamagnetic SU-8 microstructures with preferential magnetic directions,” Micromachines (Basel) 5(3), 583–593 (2014).
[Crossref]

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, and J. Brugger, “Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing,” J. Micromech. Microeng. 22(7), 074012 (2012).
[Crossref]

V. J. Cadarso, J. Perera-Núñez, L. Jacot-Descombes, K. Pfeiffer, U. Ostrzinski, A. Voigt, A. Llobera, G. Grützer, and J. Brugger, “Microlenses with defined contour shapes,” Opt. Express 19(19), 18665–18670 (2011).
[Crossref] [PubMed]

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, and J. Brugger, “Polymeric hemispherical pico-liter micro cups fabricated by inkjet printing,” in Proceedings of IEEE Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2013), pp. 1119–1122.
[Crossref]

Kim, H.-R.

Kim, J. Y.

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 1(2), 259–269 (2011).
[Crossref]

A. Voigt, U. Ostrzinski, K. Pfeiffer, J. Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8), 2174–2179 (2011).
[Crossref]

V. Fakhfouri, G. Mermoud, J. Y. Kim, A. Martinoli, and J. Brugger, “Drop-on-demand inkjet printing of SU-8 polymer,” Micro Nanosyst. 1(1), 63–67 (2009).
[Crossref]

Kim, M.

Klein, J.

G. Gruetzner, J. Klein, M. Vogler, and A. Schleunitz, “UV-curable hybrid polymers for optical applications: technical challenges, industrial solutions, and future developments,” Proc. SPIE 8974, 897406 (2014).
[Crossref]

Korvink, J. G.

D. Stüwe, D. Mager, D. Biro, and J. G. Korvink, “Inkjet technology for crystalline silicon photovoltaics,” Adv. Mater. 27(4), 599–626 (2015).
[Crossref] [PubMed]

Lee, H. J.

Liu, C.

H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

Llobera, A.

Lu, J.-P.

J.-P. Lu, W.-K. Huang, and F.-C. Chen, “Self-positioning microlens arrays prepared using ink-jet printing,” Opt. Eng. 48(7), 073606 (2009).
[Crossref]

Lumsdaine, A.

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

MacFarlane, D. L.

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, and E. Wilson, “Fabrication of micro-optics by microjet printing,” Proc. SPIE 2383, 110–115 (1995).
[Crossref]

Mager, D.

D. Stüwe, D. Mager, D. Biro, and J. G. Korvink, “Inkjet technology for crystalline silicon photovoltaics,” Adv. Mater. 27(4), 599–626 (2015).
[Crossref] [PubMed]

Mahmud, I.

Martinoli, A.

V. Fakhfouri, G. Mermoud, J. Y. Kim, A. Martinoli, and J. Brugger, “Drop-on-demand inkjet printing of SU-8 polymer,” Micro Nanosyst. 1(1), 63–67 (2009).
[Crossref]

Mastrangeli, M.

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, O. Ergeneman, C. Peters, P. Fatio, M. A. Freidy, C. Hierold, B. J. Nelson, and J. Brugger, “Inkjet printing of high aspect ratio superparamagnetic SU-8 microstructures with preferential magnetic directions,” Micromachines (Basel) 5(3), 583–593 (2014).
[Crossref]

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, and J. Brugger, “Polymeric hemispherical pico-liter micro cups fabricated by inkjet printing,” in Proceedings of IEEE Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2013), pp. 1119–1122.
[Crossref]

McConnell, G.

H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

Melchior, T.

A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, and M. Unser, “Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops,” Colloids Surf. A 364(1-3), 72–81 (2010).
[Crossref]

Mermoud, G.

V. Fakhfouri, G. Mermoud, J. Y. Kim, A. Martinoli, and J. Brugger, “Drop-on-demand inkjet printing of SU-8 polymer,” Micro Nanosyst. 1(1), 63–67 (2009).
[Crossref]

Müller, M.

A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, and M. Unser, “Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops,” Colloids Surf. A 364(1-3), 72–81 (2010).
[Crossref]

Nees, D.

M. W. Thesen, D. Nees, S. Ruttloff, M. Rumler, M. Rommel, F. Schlachter, S. Grützner, M. Vogler, A. Schleunitz, and G. Grützner, “Inkjetable and photo-curable resists for large-area and high-throughput roll-to-roll nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(4), 043003 (2014).
[Crossref]

Nelson, B. J.

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, O. Ergeneman, C. Peters, P. Fatio, M. A. Freidy, C. Hierold, B. J. Nelson, and J. Brugger, “Inkjet printing of high aspect ratio superparamagnetic SU-8 microstructures with preferential magnetic directions,” Micromachines (Basel) 5(3), 583–593 (2014).
[Crossref]

Nussbaum, P.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Ostrzinski, U.

V. J. Cadarso, J. Perera-Núñez, L. Jacot-Descombes, K. Pfeiffer, U. Ostrzinski, A. Voigt, A. Llobera, G. Grützer, and J. Brugger, “Microlenses with defined contour shapes,” Opt. Express 19(19), 18665–18670 (2011).
[Crossref] [PubMed]

A. Voigt, U. Ostrzinski, K. Pfeiffer, J. Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8), 2174–2179 (2011).
[Crossref]

Park, J.-S.

Park, M.-K.

Perera-Núñez, J.

Peters, C.

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, O. Ergeneman, C. Peters, P. Fatio, M. A. Freidy, C. Hierold, B. J. Nelson, and J. Brugger, “Inkjet printing of high aspect ratio superparamagnetic SU-8 microstructures with preferential magnetic directions,” Micromachines (Basel) 5(3), 583–593 (2014).
[Crossref]

Pfeiffer, K.

A. Voigt, U. Ostrzinski, K. Pfeiffer, J. Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8), 2174–2179 (2011).
[Crossref]

V. J. Cadarso, J. Perera-Núñez, L. Jacot-Descombes, K. Pfeiffer, U. Ostrzinski, A. Voigt, A. Llobera, G. Grützer, and J. Brugger, “Microlenses with defined contour shapes,” Opt. Express 19(19), 18665–18670 (2011).
[Crossref] [PubMed]

Popovic, Z. D.

Quéré, D.

D. Quéré, “Non-sticking drops,” Rep. Prog. Phys. 68(11), 2495–2532 (2005).
[Crossref]

Rommel, M.

M. W. Thesen, D. Nees, S. Ruttloff, M. Rumler, M. Rommel, F. Schlachter, S. Grützner, M. Vogler, A. Schleunitz, and G. Grützner, “Inkjetable and photo-curable resists for large-area and high-throughput roll-to-roll nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(4), 043003 (2014).
[Crossref]

Rumler, M.

M. W. Thesen, D. Nees, S. Ruttloff, M. Rumler, M. Rommel, F. Schlachter, S. Grützner, M. Vogler, A. Schleunitz, and G. Grützner, “Inkjetable and photo-curable resists for large-area and high-throughput roll-to-roll nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(4), 043003 (2014).
[Crossref]

Ruttloff, S.

M. W. Thesen, D. Nees, S. Ruttloff, M. Rumler, M. Rommel, F. Schlachter, S. Grützner, M. Vogler, A. Schleunitz, and G. Grützner, “Inkjetable and photo-curable resists for large-area and high-throughput roll-to-roll nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(4), 043003 (2014).
[Crossref]

Sage, D.

A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, and M. Unser, “Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops,” Colloids Surf. A 364(1-3), 72–81 (2010).
[Crossref]

Schift, H.

H. Schift, “Nanoimprint lithography process chains for the fabrication of micro- and nanodevices,” Proc. SPIE 9049, 90491E (2014).
[Crossref]

Schlachter, F.

M. W. Thesen, D. Nees, S. Ruttloff, M. Rumler, M. Rommel, F. Schlachter, S. Grützner, M. Vogler, A. Schleunitz, and G. Grützner, “Inkjetable and photo-curable resists for large-area and high-throughput roll-to-roll nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(4), 043003 (2014).
[Crossref]

Schleunitz, A.

M. W. Thesen, D. Nees, S. Ruttloff, M. Rumler, M. Rommel, F. Schlachter, S. Grützner, M. Vogler, A. Schleunitz, and G. Grützner, “Inkjetable and photo-curable resists for large-area and high-throughput roll-to-roll nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(4), 043003 (2014).
[Crossref]

G. Gruetzner, J. Klein, M. Vogler, and A. Schleunitz, “UV-curable hybrid polymers for optical applications: technical challenges, industrial solutions, and future developments,” Proc. SPIE 8974, 897406 (2014).
[Crossref]

Schreiber, H.

S. Haselbeck, M. Eisner, H. Schreiber, and J. Schwider, “Reactive ion etching of microlens arrays into fused silica,” Proc. SPIE 2169, 142–146 (1994).
[Crossref]

Schubert, U. S.

B. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

Schwider, J.

S. Haselbeck, M. Eisner, H. Schreiber, and J. Schwider, “Reactive ion etching of microlens arrays into fused silica,” Proc. SPIE 2169, 142–146 (1994).
[Crossref]

Shin, T.-K.

T.-K. Shin, J.-R. Ho, and J.-W. J. Cheng, “A new approach to polymeric microlens array fabrication using soft replica molding,” IEEE Photonics Technol. Lett. 16(9), 2078–2080 (2004).
[Crossref]

Sidler, K.

V. J. Cadarso, S. Chosson, K. Sidler, R. D. Hersch, and J. Brugger, “High-resolution 1D moirés as counterfeit security features,” Light Sci. Appl. 2(7), e86 (2013).
[Crossref]

Sprague, R. A.

Stalder, A. F.

A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, and M. Unser, “Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops,” Colloids Surf. A 364(1-3), 72–81 (2010).
[Crossref]

Stüwe, D.

D. Stüwe, D. Mager, D. Biro, and J. G. Korvink, “Inkjet technology for crystalline silicon photovoltaics,” Adv. Mater. 27(4), 599–626 (2015).
[Crossref] [PubMed]

Thesen, M. W.

M. W. Thesen, D. Nees, S. Ruttloff, M. Rumler, M. Rommel, F. Schlachter, S. Grützner, M. Vogler, A. Schleunitz, and G. Grützner, “Inkjetable and photo-curable resists for large-area and high-throughput roll-to-roll nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(4), 043003 (2014).
[Crossref]

Tseng, Z.-F.

C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
[Crossref]

C.-T. Chen, C.-L. Chiu, Z.-F. Tseng, and C.-T. Chuang, “Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets,” Sens. Actuators Phys. 147(2), 369–377 (2008).
[Crossref]

Unser, M.

A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, and M. Unser, “Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops,” Colloids Surf. A 364(1-3), 72–81 (2010).
[Crossref]

Ussery, D. W.

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, and E. Wilson, “Fabrication of micro-optics by microjet printing,” Proc. SPIE 2383, 110–115 (1995).
[Crossref]

Vogler, M.

G. Gruetzner, J. Klein, M. Vogler, and A. Schleunitz, “UV-curable hybrid polymers for optical applications: technical challenges, industrial solutions, and future developments,” Proc. SPIE 8974, 897406 (2014).
[Crossref]

M. W. Thesen, D. Nees, S. Ruttloff, M. Rumler, M. Rommel, F. Schlachter, S. Grützner, M. Vogler, A. Schleunitz, and G. Grützner, “Inkjetable and photo-curable resists for large-area and high-throughput roll-to-roll nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(4), 043003 (2014).
[Crossref]

Voigt, A.

A. Voigt, U. Ostrzinski, K. Pfeiffer, J. Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8), 2174–2179 (2011).
[Crossref]

V. J. Cadarso, J. Perera-Núñez, L. Jacot-Descombes, K. Pfeiffer, U. Ostrzinski, A. Voigt, A. Llobera, G. Grützer, and J. Brugger, “Microlenses with defined contour shapes,” Opt. Express 19(19), 18665–18670 (2011).
[Crossref] [PubMed]

Völkel, R.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

R. Dändliker, S. Gray, F. Clube, H. P. Herzig, and R. Völkel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27(1-4), 205–211 (1995).
[Crossref]

Watson, I. M.

H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

Wilson, E.

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, and E. Wilson, “Fabrication of micro-optics by microjet printing,” Proc. SPIE 2383, 110–115 (1995).
[Crossref]

Adv. Mater. (2)

B. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Adv. Mater. 16(3), 203–213 (2004).
[Crossref]

D. Stüwe, D. Mager, D. Biro, and J. G. Korvink, “Inkjet technology for crystalline silicon photovoltaics,” Adv. Mater. 27(4), 599–626 (2015).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (1)

B. Derby, “Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution,” Annu. Rev. Mater. Res. 40(1), 395–414 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses,” Appl. Phys. Lett. 84(13), 2253–2255 (2004).
[Crossref]

Colloids Surf. A (1)

A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, and M. Unser, “Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops,” Colloids Surf. A 364(1-3), 72–81 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T.-K. Shin, J.-R. Ho, and J.-W. J. Cheng, “A new approach to polymeric microlens array fabrication using soft replica molding,” IEEE Photonics Technol. Lett. 16(9), 2078–2080 (2004).
[Crossref]

J. Micro. Nanolithogr. MEMS MOEMS (1)

M. W. Thesen, D. Nees, S. Ruttloff, M. Rumler, M. Rommel, F. Schlachter, S. Grützner, M. Vogler, A. Schleunitz, and G. Grützner, “Inkjetable and photo-curable resists for large-area and high-throughput roll-to-roll nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(4), 043003 (2014).
[Crossref]

J. Micromech. Microeng. (2)

C.-T. Chen, Z.-F. Tseng, C.-L. Chiu, C.-Y. Hsu, and C.-T. Chuang, “Self-aligned hemispherical formation of microlenses from colloidal droplets on heterogeneous surfaces,” J. Micromech. Microeng. 19(2), 025002 (2009).
[Crossref]

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, and J. Brugger, “Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing,” J. Micromech. Microeng. 22(7), 074012 (2012).
[Crossref]

J. Opt. Soc. Korea (1)

Light Sci. Appl. (1)

V. J. Cadarso, S. Chosson, K. Sidler, R. D. Hersch, and J. Brugger, “High-resolution 1D moirés as counterfeit security features,” Light Sci. Appl. 2(7), e86 (2013).
[Crossref]

Micro Nanosyst. (1)

V. Fakhfouri, G. Mermoud, J. Y. Kim, A. Martinoli, and J. Brugger, “Drop-on-demand inkjet printing of SU-8 polymer,” Micro Nanosyst. 1(1), 63–67 (2009).
[Crossref]

Microelectron. Eng. (2)

A. Voigt, U. Ostrzinski, K. Pfeiffer, J. Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8), 2174–2179 (2011).
[Crossref]

R. Dändliker, S. Gray, F. Clube, H. P. Herzig, and R. Völkel, “Non-conventional techniques for optical lithography,” Microelectron. Eng. 27(1-4), 205–211 (1995).
[Crossref]

Micromachines (Basel) (1)

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, O. Ergeneman, C. Peters, P. Fatio, M. A. Freidy, C. Hierold, B. J. Nelson, and J. Brugger, “Inkjet printing of high aspect ratio superparamagnetic SU-8 microstructures with preferential magnetic directions,” Micromachines (Basel) 5(3), 583–593 (2014).
[Crossref]

Opt. Eng. (1)

J.-P. Lu, W.-K. Huang, and F.-C. Chen, “Self-positioning microlens arrays prepared using ink-jet printing,” Opt. Eng. 48(7), 073606 (2009).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Fluids (1)

A. U. Chen and O. A. Basaran, “A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production,” Phys. Fluids 14, L1–L4 (2002).

Proc. SPIE (7)

G. Gruetzner, J. Klein, M. Vogler, and A. Schleunitz, “UV-curable hybrid polymers for optical applications: technical challenges, industrial solutions, and future developments,” Proc. SPIE 8974, 897406 (2014).
[Crossref]

H. Schift, “Nanoimprint lithography process chains for the fabrication of micro- and nanodevices,” Proc. SPIE 9049, 90491E (2014).
[Crossref]

E. J. Gratrix, “Evolution of a microlens surface under etching conditions,” Proc. SPIE 8299, 266–274 (1993).
[Crossref]

S. Haselbeck, M. Eisner, H. Schreiber, and J. Schwider, “Reactive ion etching of microlens arrays into fused silica,” Proc. SPIE 2169, 142–146 (1994).
[Crossref]

W. R. Cox, C. Guan, and D. J. Hayes, “Microjet printing of micro-optical interconnects and sensors,” Proc. SPIE 3952, 400–407 (2000).
[Crossref]

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, and E. Wilson, “Fabrication of micro-optics by microjet printing,” Proc. SPIE 2383, 110–115 (1995).
[Crossref]

Pure Appl. Opt. (1)

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Rep. Prog. Phys. (1)

D. Quéré, “Non-sticking drops,” Rep. Prog. Phys. 68(11), 2495–2532 (2005).
[Crossref]

Sens. Actuators Phys. (1)

C.-T. Chen, C.-L. Chiu, Z.-F. Tseng, and C.-T. Chuang, “Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets,” Sens. Actuators Phys. 147(2), 369–377 (2008).
[Crossref]

Thin Solid Films (1)

R. Danzebrink and M. A. Aegerter, “Deposition of optical microlens arrays by ink-jet processes,” Thin Solid Films 392(2), 223–225 (2001).
[Crossref]

Other (5)

L. Jacot-Descombes, A. Schleunitz, J. J. Klein, S. Grützner, F. Bullerjahn, and G. Grützner, “UV-imprinting for the integration of inkjet-printed micro-optical elements,” in Proceedings of the 5. GMM-Workshops Mikro-Nano-Integration (2014), Vol. GMM-FB 81.

W. R. Cox and T. Chen, “Micro-jet printing of refractive microlenses,” (1998).

E. R. Lee, Microdrop Generation, 1st ed. (Chemical Rubber Company, 2002).

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, M. Mastrangeli, and J. Brugger, “Polymeric hemispherical pico-liter micro cups fabricated by inkjet printing,” in Proceedings of IEEE Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2013), pp. 1119–1122.
[Crossref]

M. Russew, J. Klein, M. Vogler, and G. Grützner, micro resist technology GmbH, Köpenicker. Str. 325, Berlin, OrmoComp® (personal communication, 2015), (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic illustration of the fabrication process: a) Substrate replication; Step 1: master (photoresist on top of Si wafer) done by spin-coating, bake, exposure and development, Step 2: Stamp (of OrmoStamp®) done by casting, exposure and separation and Step 3: Replication done by UV-imprint/casting, exposure/bake of the final OrmoComp®/PDMS substrates. b) Step 4: Microlens growth by inkjet printing, bake and UV-exposure induced cross-linkage reaching specific characteristics schematized here with three types of microlenses (I, II and III).
Fig. 2
Fig. 2 SEM micrographs of an inkjet printed and cross-linked MLA on PDMS platforms with lenses of identical curvatures: a) Full MLA with (b) a zoom into a few microlenses showing their overall spherical profile and high reproducibility. Both scale bars are 100 µm.
Fig. 3
Fig. 3 Microlens optical characterization for a) 50 µm, b) 100 µm and c) 200 µm -footprint microlenses: experimental measured results of the NAs and fs by increasing the volume – expressed by the number of printed drops per platforms – compared with theoretical calculated evolution. The experimental results are measured from optical CCD images (empty points) and from geometrical profiles (bulk points shown with their standard deviations).
Fig. 4
Fig. 4 MLA on OrmoComp® platforms with single characteristics: a) SEM image of a part of the cross-linked MLA. b) Optical image of the focal plane showing the individual microlens focal points (pitch of 176.8 ± 0.4 µm). c) Intensity distribution of one of the lenses in the array; d) TIS of the microlens array calculated based on the microlens surface roughness, and a small inlet schematizing the AFM measurement. The scale bars are 100 µm.
Fig. 5
Fig. 5 MLA with 9 different microlens specifications: a) Scheme of the array, b) optical top view showing the microlens height varying with the volume increase from platform to platform and c) side view optical image showing the microlens different heights depending on the number of inkjet printed drops. The scale bar is 100 µm.
Fig. 6
Fig. 6 MLA with two focal lengths. a) Scheme of the array representing the two different microlens types onto the platforms; type I in dark blue and type II in light blue. b) SEM images of a part of the array artificially colored to highlight the two microlens types. c) Optical images of the focal planes of the lens type 1(left) and type 2 (right) in B&W. Scale bars are 100 µm.

Tables (1)

Tables Icon

Table 1 - Lens type I and II properties

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R = ( K + 1 ) h 2 + ( D / 2 ) 2 2 h
N A = D / 2 ( D 2 ) 2 + f 2
f = R n 1
T I S ( 4 π δ λ ) 2

Metrics