Abstract

High average laser powers can have a serious adverse impact on the ablation quality in ultra-short pulsed laser material processing of metals. With respect to the scanning speed, a sharp transition between a smooth, reflective and an uneven, dark ablated surface is observed. Investigating the influence of the sample temperature, it is experimentally shown that this effect stems from heat accumulation. In a numerical heat flow simulation, the critical scanning speed indicating the change in ablation quality is determined in good agreement with the experimental data.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Processing constraints resulting from heat accumulation during pulsed and repetitive laser materials processing

Rudolf Weber, Thomas Graf, Christian Freitag, Anne Feuer, Taras Kononenko, and Vitaly I. Konov
Opt. Express 25(4) 3966-3979 (2017)

Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz

Johannes Finger and Martin Reininghaus
Opt. Express 22(15) 18790-18799 (2014)

Heat accumulation during pulsed laser materials processing

Rudolf Weber, Thomas Graf, Peter Berger, Volkher Onuseit, Margit Wiedenmann, Christian Freitag, and Anne Feuer
Opt. Express 22(9) 11312-11324 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).
    [Crossref]
  2. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
    [Crossref]
  3. J. Cheng, W. Perrie, S. Edwardson, E. Fearon, G. Dearden, and K. Watkins, “Effects of laser operating parameters on metals micromachining with ultrafast lasers,” Appl. Surf. Sci. 256(5), 1514–1520 (2009).
    [Crossref]
  4. R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  5. D. Bäuerle, Laser Processing and Chemistry (Springer, 2011), Chap. 13.
  6. R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
    [Crossref]
  7. A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. Express 14(26), 13113–13119 (2006).
    [Crossref] [PubMed]
  8. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref] [PubMed]
  9. R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22(9), 11312–11324 (2014).
    [Crossref] [PubMed]
  10. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
    [Crossref] [PubMed]
  11. G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
    [Crossref]
  12. B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffinage, and P. Martin, “Optimization of the volume ablation rate for metals at different laser-pulse durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
    [Crossref]
  13. D. Thomas, C. Foulkes-Williams, P. Rumsby, and M. Gower, “Surface modifications of polymers and ceramics induced by excimer laser radiation,” in Laser Ablation of Electronic Materials, E. Fogarassy and S. Lazare, ed. (Elsevier Science, 1992).
  14. D. Young, High Temperature Oxidation and Corrosion of Metals (Elsevier, 2008).
  15. J. Xie and A. Kar, “Laser welding of thin sheet steel with surface oxidation,” Weld. J. 78, 342–348 (1999).
  16. H. Carslaw and J. Jaeger, Conduction of Heat in Solids (Oxford University, 1959).
  17. SEW 310, Physikalische Eigenschaften von Stählen (Verlag Stahleisen GmbH, 1992).

2014 (1)

2012 (1)

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffinage, and P. Martin, “Optimization of the volume ablation rate for metals at different laser-pulse durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

2009 (2)

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[Crossref] [PubMed]

J. Cheng, W. Perrie, S. Edwardson, E. Fearon, G. Dearden, and K. Watkins, “Effects of laser operating parameters on metals micromachining with ultrafast lasers,” Appl. Surf. Sci. 256(5), 1514–1520 (2009).
[Crossref]

2008 (2)

R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
[Crossref]

2006 (1)

2005 (1)

2002 (1)

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

1999 (1)

J. Xie and A. Kar, “Laser welding of thin sheet steel with surface oxidation,” Weld. J. 78, 342–348 (1999).

1997 (1)

1995 (1)

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).
[Crossref]

Ancona, A.

Arai, A.

Audouard, E.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Berger, P.

Bovatsek, J.

Brikas, M.

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
[Crossref]

Cheng, J.

J. Cheng, W. Perrie, S. Edwardson, E. Fearon, G. Dearden, and K. Watkins, “Effects of laser operating parameters on metals micromachining with ultrafast lasers,” Appl. Surf. Sci. 256(5), 1514–1520 (2009).
[Crossref]

Chichkov, B.

Dearden, G.

J. Cheng, W. Perrie, S. Edwardson, E. Fearon, G. Dearden, and K. Watkins, “Effects of laser operating parameters on metals micromachining with ultrafast lasers,” Appl. Surf. Sci. 256(5), 1514–1520 (2009).
[Crossref]

Demchuk, A.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).
[Crossref]

Döring, S.

Eaton, S.

Edwardson, S.

J. Cheng, W. Perrie, S. Edwardson, E. Fearon, G. Dearden, and K. Watkins, “Effects of laser operating parameters on metals micromachining with ultrafast lasers,” Appl. Surf. Sci. 256(5), 1514–1520 (2009).
[Crossref]

Fearon, E.

J. Cheng, W. Perrie, S. Edwardson, E. Fearon, G. Dearden, and K. Watkins, “Effects of laser operating parameters on metals micromachining with ultrafast lasers,” Appl. Surf. Sci. 256(5), 1514–1520 (2009).
[Crossref]

Feuer, A.

Fortunier, R.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Fraczkiewicz, A.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Freitag, C.

Gattas, R.

R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gecys, P.

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
[Crossref]

Gedvilas, M.

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
[Crossref]

Graf, T.

Guo, C.

Herman, P.

Huot, N.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Jacobs, H.

Jaeggi, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffinage, and P. Martin, “Optimization of the volume ablation rate for metals at different laser-pulse durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

Jauregui, C.

Jonin, C.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Kar, A.

J. Xie and A. Kar, “Laser welding of thin sheet steel with surface oxidation,” Weld. J. 78, 342–348 (1999).

Laporte, P.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Le Harzic, R.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Limpert, J.

Martin, P.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffinage, and P. Martin, “Optimization of the volume ablation rate for metals at different laser-pulse durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

Mazur, E.

R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Momma, C.

Neuenschwander, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffinage, and P. Martin, “Optimization of the volume ablation rate for metals at different laser-pulse durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

Nolte, S.

Onuseit, V.

Perrie, W.

J. Cheng, W. Perrie, S. Edwardson, E. Fearon, G. Dearden, and K. Watkins, “Effects of laser operating parameters on metals micromachining with ultrafast lasers,” Appl. Surf. Sci. 256(5), 1514–1520 (2009).
[Crossref]

Preuss, S.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).
[Crossref]

Raciukaitis, G.

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
[Crossref]

Röser, F.

Rouffinage, V.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffinage, and P. Martin, “Optimization of the volume ablation rate for metals at different laser-pulse durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

Schmid, M.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffinage, and P. Martin, “Optimization of the volume ablation rate for metals at different laser-pulse durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

Shah, L.

Stuke, M.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).
[Crossref]

Tünnermann, A.

Valette, S.

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Vorobyev, A. Y.

Watkins, K.

J. Cheng, W. Perrie, S. Edwardson, E. Fearon, G. Dearden, and K. Watkins, “Effects of laser operating parameters on metals micromachining with ultrafast lasers,” Appl. Surf. Sci. 256(5), 1514–1520 (2009).
[Crossref]

Weber, R.

Wellegehausen, B.

Welling, H.

Wiedenmann, M.

Xie, J.

J. Xie and A. Kar, “Laser welding of thin sheet steel with surface oxidation,” Weld. J. 78, 342–348 (1999).

Yoshino, F.

Zhang, H.

Appl. Phys. Lett. (1)

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, and R. Fortunier, “Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy,” Appl. Phys. Lett. 80(21), 3886–3888 (2002).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995).
[Crossref]

Appl. Surf. Sci. (1)

J. Cheng, W. Perrie, S. Edwardson, E. Fearon, G. Dearden, and K. Watkins, “Effects of laser operating parameters on metals micromachining with ultrafast lasers,” Appl. Surf. Sci. 256(5), 1514–1520 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

R. Gattas and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (2)

G. Raciukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffinage, and P. Martin, “Optimization of the volume ablation rate for metals at different laser-pulse durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

Weld. J. (1)

J. Xie and A. Kar, “Laser welding of thin sheet steel with surface oxidation,” Weld. J. 78, 342–348 (1999).

Other (5)

H. Carslaw and J. Jaeger, Conduction of Heat in Solids (Oxford University, 1959).

SEW 310, Physikalische Eigenschaften von Stählen (Verlag Stahleisen GmbH, 1992).

D. Bäuerle, Laser Processing and Chemistry (Springer, 2011), Chap. 13.

D. Thomas, C. Foulkes-Williams, P. Rumsby, and M. Gower, “Surface modifications of polymers and ceramics induced by excimer laser radiation,” in Laser Ablation of Electronic Materials, E. Fogarassy and S. Lazare, ed. (Elsevier Science, 1992).

D. Young, High Temperature Oxidation and Corrosion of Metals (Elsevier, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of scanning laser ablation on a hot plate which uniformly sets the sample to an offset temperature.
Fig. 2
Fig. 2 SEM images of laser processed structures on stainless steel (1.4301) in the two ablation regimes (2w0 = 50 µm, frep = 800 kHz, d = 10 µm, F = 0.43 J/cm2, Toffset = 23 °C). (a) shows the typical smooth and reflective surface (v = 4 m/s, 80 passes). In (b) the surface is very rough and covered with small bumps (v = 0.5 m/s, 10 passes).
Fig. 3
Fig. 3 Microscope images of laser processed stainless steel samples (2w0 = 50 µm, frep = 800 kHz, d = 10 µm, F = 0.37 J/cm2, Toffset = 23 °C). The scanning speed is varied and the number of passes is adapted to keep the total energy applied constant. Reducing the scanning speed, a sharp transition in the ablation quality from reflective and smooth to dark and bumpy is observed.
Fig. 4
Fig. 4 In (a) an overview EDS spectrum of the unprocessed stainless steel (1.4301) sample is shown. In (b) the comparison of spectra taken on the different surfaces (normalized to the Fe peak) illustrates the considerably higher amount of oxides present on the bumpy surface.
Fig. 5
Fig. 5 Experimental data representing the rise in critical scanning speed vcrit when the offset temperature Toffset of the stainless steel sample is increased using a hot plate. A higher fluence also results in a higher critical scanning speed vcrit for a given offset temperature. The dashed lines show the simulated values (see Sect. 3.3) for the critical scanning speed. For the simulation, a critical saturation temperature of Tth = 607 °C was applied.
Fig. 6
Fig. 6 Schematic illustration of the energy distribution after irradiation with an ultra-short laser pulse.
Fig. 7
Fig. 7 (a) Simulation of heat accumulation using frep = 800 kHz, 2w0 = 50 µm, F1 = 0.37 J/cm2, Toffset = 23 °C, v = 4 m/s, ηres = 0.4, material parameters for 1.4301 stainless steel according to Table 1. The maximum temperature at the surface is plotted against time. After ~10 pulses, a saturation temperature Tsat is reached. In (b) the temperature directly before the next pulse at the position of maximum temperature is plotted against depth z. The temperature gradient in saturation is much greater than in the beginning and allows a more efficient heat conduction.
Fig. 8
Fig. 8 Maximum temperature value plotted as a function of time for a fluence of 0.37 J/cm2, a spot diameter of 50 µm, a repetition rate of 800 kHz and different scanning speeds. In contrast to the simulation shown in Fig. 7, the sample offset temperature was chosen to be Toffset = 250 °C.

Tables (1)

Tables Icon

Table 1 Thermophysical Properties of 1.4301 Stainless Steela

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

η abs E p = E abl + E v + E res.heat E res.heat = η res E p
T(R,t)= Q ρc (4πκt) 3 2 e R 2 4κt
T(x,y,z,t)= d x 0 d y 0 d z 0 Q ˜ ( x 0 , y 0 , z 0 ) ρc (4πκt) 3 2 e (x x 0 ) 2 + (y y 0 ) 2 + (z z 0 ) 2 4κt
Q ˜ ( x 0 , y 0 , z 0 )= 4 E res π w 0 2 e 2( (x x 0 ) 2 + (y y 0 ) 2 ) w 0 2 δ(z z 0 ).
T ( x c , y c ) s.p. (x,y,z,t)= 2 E res πρc πκt (8κt+ w 0 2 ) e (x x c ) 2 + (y y c ) 2 4κt ( w 0 2 8κt+ w 0 2 1 ) e z 2 4κt
T(x,y,z,t)= i=0 N T ( x c i , y c i ) s.p. (x,y,z,t+iΔ t pp )
E( x i , y j , z 0 , t n )=E( x i , y j , z 0 , t n1 )+ E res ΔxΔyexp{ 2 w 0 2 [( x i x c ) 2 + ( y j y c ) 2 ] }.
T( x i , y j , z k , t n )= E( x i , y j , z k , t n ) cρΔxΔyΔz
T( x , t n )=( BT )( x , t n1 )
B 1jk = B 3jk = κΔt ( Δx ) 2 δ 22 , B 2 =( 0 κΔt ( Δz ) 2 0 κΔt ( Δy ) 2 1 2κΔt ( Δx ) 2 + ( Δy ) 2 + ( Δz ) 2 κΔt ( Δy ) 2 0 κΔt ( Δz ) 2 0 )
T ( x c , y c ) s.p. (t) 2 E res πρc πκt w 0 2 .

Metrics