Abstract

The minority carrier lifetime is a measurable material property that is an indication of infrared detector device performance. To study the utility of measuring the carrier lifetime, an experiment has been constructed that can time resolve the photo-luminescent decay of a detector or wafer sample housed inside a liquid nitrogen cooled Dewar. Motorized stages allow the measurement to be scanned over the sample surface, and spatial resolutions as low as 50µm have been demonstrated. A carrier recombination simulation was developed to analyze the experimental data. Results from measurements performed on 4 mercury cadmium telluride focal plane arrays show strong correlation between spatial maps of the lifetime, dark current, and relative response.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mercury cadmium telluride focal-plane array detection for mid-infrared Fourier-transform spectroscopic imaging

L. H. Kidder, I. W. Levin, E. Neil Lewis, V. D. Kleiman, and E. J. Heilweil
Opt. Lett. 22(10) 742-744 (1997)

Time resolved long-wave infrared laser-induced breakdown spectroscopy of inorganic energetic materials by a rapid mercury–cadmium–telluride linear array detection system

Clayton S.-C. Yang, Feng Jin, Sudhir Trivedi, Eiei Brown, Uwe Hommerich, Jacob B. Khurgin, and Alan C. Samuels
Appl. Opt. 55(32) 9166-9172 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Streetman and S. Banerjee, Solid State Electronic Devices, 5th ed. (Prentice Hall, 2000).
  2. S. Sze and K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons, 2007).
  3. S. Rein, Lifetime Spectroscopy, 1st ed. (Springer, 2005).
  4. P. K. Saxena, “Modeling and simulation of HgCdTe based p+-n-n+ LWIR photodetector,” Infrared Phys. Technol. 54(1), 25–33 (2011).
    [Crossref]
  5. A. Itsuno, J. Phillips, and S. Velicu, “Predicted performance improvement of auger-suppressed HgCdTe photodiodes and p-n heterojunction detectors,” IEEE Trans. Electron. Dev. 58(2), 501–507 (2011).
    [Crossref]
  6. V. C. Lopes, A. J. Syllaios, and M. C. Chen, “Minority carrier lifetime in mercury cadmium telluride,” Semicond. Sci. Technol. 8(6S), 824–841 (1993).
    [Crossref]
  7. G. L. Hansen, J. L. Schmit, and T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg(1-x)Cd(x)Te,” J. Appl. Phys. 53(10), 7099–7101 (1982).
    [Crossref]
  8. G. L. Hansen and J. L. Schmit, “Calculation of intrinsic carrier concentration in Hg(1-x)Cd(x)Te,” J. Appl. Phys. 54(3), 1639–1640 (1983).
    [Crossref]

2011 (2)

P. K. Saxena, “Modeling and simulation of HgCdTe based p+-n-n+ LWIR photodetector,” Infrared Phys. Technol. 54(1), 25–33 (2011).
[Crossref]

A. Itsuno, J. Phillips, and S. Velicu, “Predicted performance improvement of auger-suppressed HgCdTe photodiodes and p-n heterojunction detectors,” IEEE Trans. Electron. Dev. 58(2), 501–507 (2011).
[Crossref]

1993 (1)

V. C. Lopes, A. J. Syllaios, and M. C. Chen, “Minority carrier lifetime in mercury cadmium telluride,” Semicond. Sci. Technol. 8(6S), 824–841 (1993).
[Crossref]

1983 (1)

G. L. Hansen and J. L. Schmit, “Calculation of intrinsic carrier concentration in Hg(1-x)Cd(x)Te,” J. Appl. Phys. 54(3), 1639–1640 (1983).
[Crossref]

1982 (1)

G. L. Hansen, J. L. Schmit, and T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg(1-x)Cd(x)Te,” J. Appl. Phys. 53(10), 7099–7101 (1982).
[Crossref]

Casselman, T. N.

G. L. Hansen, J. L. Schmit, and T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg(1-x)Cd(x)Te,” J. Appl. Phys. 53(10), 7099–7101 (1982).
[Crossref]

Chen, M. C.

V. C. Lopes, A. J. Syllaios, and M. C. Chen, “Minority carrier lifetime in mercury cadmium telluride,” Semicond. Sci. Technol. 8(6S), 824–841 (1993).
[Crossref]

Hansen, G. L.

G. L. Hansen and J. L. Schmit, “Calculation of intrinsic carrier concentration in Hg(1-x)Cd(x)Te,” J. Appl. Phys. 54(3), 1639–1640 (1983).
[Crossref]

G. L. Hansen, J. L. Schmit, and T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg(1-x)Cd(x)Te,” J. Appl. Phys. 53(10), 7099–7101 (1982).
[Crossref]

Itsuno, A.

A. Itsuno, J. Phillips, and S. Velicu, “Predicted performance improvement of auger-suppressed HgCdTe photodiodes and p-n heterojunction detectors,” IEEE Trans. Electron. Dev. 58(2), 501–507 (2011).
[Crossref]

Lopes, V. C.

V. C. Lopes, A. J. Syllaios, and M. C. Chen, “Minority carrier lifetime in mercury cadmium telluride,” Semicond. Sci. Technol. 8(6S), 824–841 (1993).
[Crossref]

Phillips, J.

A. Itsuno, J. Phillips, and S. Velicu, “Predicted performance improvement of auger-suppressed HgCdTe photodiodes and p-n heterojunction detectors,” IEEE Trans. Electron. Dev. 58(2), 501–507 (2011).
[Crossref]

Saxena, P. K.

P. K. Saxena, “Modeling and simulation of HgCdTe based p+-n-n+ LWIR photodetector,” Infrared Phys. Technol. 54(1), 25–33 (2011).
[Crossref]

Schmit, J. L.

G. L. Hansen and J. L. Schmit, “Calculation of intrinsic carrier concentration in Hg(1-x)Cd(x)Te,” J. Appl. Phys. 54(3), 1639–1640 (1983).
[Crossref]

G. L. Hansen, J. L. Schmit, and T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg(1-x)Cd(x)Te,” J. Appl. Phys. 53(10), 7099–7101 (1982).
[Crossref]

Syllaios, A. J.

V. C. Lopes, A. J. Syllaios, and M. C. Chen, “Minority carrier lifetime in mercury cadmium telluride,” Semicond. Sci. Technol. 8(6S), 824–841 (1993).
[Crossref]

Velicu, S.

A. Itsuno, J. Phillips, and S. Velicu, “Predicted performance improvement of auger-suppressed HgCdTe photodiodes and p-n heterojunction detectors,” IEEE Trans. Electron. Dev. 58(2), 501–507 (2011).
[Crossref]

IEEE Trans. Electron. Dev. (1)

A. Itsuno, J. Phillips, and S. Velicu, “Predicted performance improvement of auger-suppressed HgCdTe photodiodes and p-n heterojunction detectors,” IEEE Trans. Electron. Dev. 58(2), 501–507 (2011).
[Crossref]

Infrared Phys. Technol. (1)

P. K. Saxena, “Modeling and simulation of HgCdTe based p+-n-n+ LWIR photodetector,” Infrared Phys. Technol. 54(1), 25–33 (2011).
[Crossref]

J. Appl. Phys. (2)

G. L. Hansen, J. L. Schmit, and T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg(1-x)Cd(x)Te,” J. Appl. Phys. 53(10), 7099–7101 (1982).
[Crossref]

G. L. Hansen and J. L. Schmit, “Calculation of intrinsic carrier concentration in Hg(1-x)Cd(x)Te,” J. Appl. Phys. 54(3), 1639–1640 (1983).
[Crossref]

Semicond. Sci. Technol. (1)

V. C. Lopes, A. J. Syllaios, and M. C. Chen, “Minority carrier lifetime in mercury cadmium telluride,” Semicond. Sci. Technol. 8(6S), 824–841 (1993).
[Crossref]

Other (3)

B. Streetman and S. Banerjee, Solid State Electronic Devices, 5th ed. (Prentice Hall, 2000).

S. Sze and K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons, 2007).

S. Rein, Lifetime Spectroscopy, 1st ed. (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Illustration of the 3 types of carrier recombination.
Fig. 2
Fig. 2 Carrier recombination simulation using a 10ns 1nJ laser pulse on MCT at 100K with composition x = 0.287.
Fig. 3
Fig. 3 Diagram of the TRPL experiment.
Fig. 4
Fig. 4 Example oscilloscope trace averages and simulation optimized showing 4 different SRH lifetimes.
Fig. 5
Fig. 5 Carrier lifetime mapping results for shortwave FPA #1 (axis are FPA pixels).
Fig. 6
Fig. 6 Lifetime map and relative response map for a region of interest on shortwave FPA #1 (axis are FPA pixels).
Fig. 7
Fig. 7 Lifetime and dark current maps for shortwave FPA #2 (axis are FPA pixels).
Fig. 8
Fig. 8 Relative response map for shortwave FPA #2 (axis are FPA pixels).
Fig. 9
Fig. 9 Lifetime and dark current maps for midwave FPA #1(axis are FPA pixels).
Fig. 10
Fig. 10 Lifetime and dark current maps for midwave FPA #2 (axis are FPA pixels).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

n(t+Δt)=n(t)+Δt G optical (t)Δt( U aug + U rad + U SRH )
p(t+Δt)=p(t)+Δt G optical (t)Δt( U aug + U rad + U SRH )
U aug = C n ( n 2 p n 0 2 p 0 )+ C p (n p 2 n 0 p 0 2 )
U rad =B(np n i 2 )
U SRH = (np n i 2 ) τ SRHn (p+ p 1 )+ τ SRHp (n+ n 1 )
n 0 p 0 = n i 2
B=5.8× 10 13 ε ( m 0 m c + m v ) 3 2 ( 1+ m 0 m c + m 0 m v ) × ( 300 T ) 3 2 ( E g 2 +3kT E g +2.75 k 2 T 2 )
C n = ( m c m 0 ) | F 1 F 2 | 2 2 n i 2 (3.8× 10 18 ) ε 2 ( 1+ m c m v ) 1 2 ( 1+ 2 m c m v ) × ( E g kT ) 3 2 exp( 1+ 2 m c m v 1+ m c m v E g kT )
C p = C n [ 1 3 E g kT 6( 1 5 E g 4kT ) ]
E g =0.302+1.93x+5.35× 10 4 T(12x)0.81 x 2 +0.832 x 3
n i =(5.5853.82x+1.753× 10 3 T1.364× 10 3 xT) × 10 14 E g 3 4 T 3 2 exp( E g 2kT )
n 0 = N D N A 2 + ( N D N A 2 ) 2 + n i 2
p 0 = N A N D 2 + ( N A N D 2 ) 2 + n i 2

Metrics