Abstract

We investigated the influence of laser-induced air breakdown on the femtosecond laser ablation of aluminum target using time-resolved pump-probe shadowgraphic imaging method. The early-stage plasma expanding dynamics and subsequent expanding behaviors of shockwaves and material ejection plume were analyzed through shadowgraphs recorded at different time delays. The dominated mechanisms were clarified at different stages during femtosecond laser pulses ablating aluminum, which provide very valuable information for ultrashort laser ablation of metals.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing the expansion of a plasma shockwave by crater-induced laser refocusing in femtosecond laser ablation of fused silica

Qingsong Wang, Lan Jiang, Jingya Sun, Changji Pan, Weina Han, Guoyan Wang, Hao Zhang, Costas P. Grigoropoulos, and Yongfeng Lu
Photon. Res. 5(5) 488-493 (2017)

Plasma evolution during metal ablation with ultrashort laser pulses

J. König, S. Nolte, and A. Tünnermann
Opt. Express 13(26) 10597-10607 (2005)

Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy

Yangting Fu, Zongyu Hou, and Zhe Wang
Opt. Express 24(3) 3055-3066 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95(3), 034107 (2009).
    [Crossref]
  2. T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
    [Crossref]
  3. M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
    [Crossref]
  4. S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
    [Crossref]
  5. B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
    [Crossref]
  6. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Acta, Part B 55(11), 1771–1785 (2000).
    [Crossref]
  7. F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17(2), 419–425 (2009).
    [Crossref] [PubMed]
  8. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
    [Crossref] [PubMed]
  9. W. Tan, H. Liu, J. Si, and X. Hou, “Control of the gated spectra with narrow bandwidth from a supercontinuum using ultrafast optical Kerr gate of bismuth glass,” Appl. Phys. Lett. 93(5), 051109 (2008).
    [Crossref]
  10. H. Liu, W. Tan, J. Si, X. Hou, and X. Hou, “Acquisition of gated spectra from a supercontinuum using ultrafast optical Kerr gate of lead phthalocyanine-doped hybrid glasses,” Opt. Express 16(17), 13486–13491 (2008).
    [Crossref] [PubMed]
  11. X. Wang and X. Xu, “Thermoelastic wave in metal induced by ultrafast laser pulses,” J. Therm. Stresses 25(5), 457–473 (2002).
    [Crossref]
  12. M. Sakakura and M. Terazima, “Oscillation of the refractive index at the focal region of a femtosecond laser pulse inside a glass,” Opt. Lett. 29(13), 1548–1550 (2004).
    [Crossref] [PubMed]
  13. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15(9), 5674–5686 (2007).
    [Crossref] [PubMed]
  14. H. Hu, X. Wang, and H. Zhai, “Neutrals ejection in intense femtosecond laser ablation,” Opt. Lett. 36(2), 124–126 (2011).
    [Crossref] [PubMed]
  15. C. A. Zuhlke, J. Bruce, T. P. Anderson, D. R. Alexander, and C. G. Parigger, “A fundamental understanding of the dependence of the laser-induced breakdown spectroscopy (LIBS) signal strength on the complex focusing dynamics of femtosecond laser pulses on either side of the focus,” Appl. Spectrosc. 68(9), 1021–1029 (2014).
    [Crossref] [PubMed]
  16. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).
    [Crossref]
  17. P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
    [Crossref] [PubMed]
  18. W. G. Roeterdink, L. B. F. Juurlink, O. P. H. Vaughan, J. Dura Diez, M. Bonn, and A. W. Kleyn, “Coulomb explosion in femtosecond laser ablation of Si(111),” Appl. Phys. Lett. 82(23), 4190–4192 (2003).
    [Crossref]
  19. Y. T. Li, J. Zhang, H. Teng, K. Li, X. Y. Peng, Z. Jin, X. Lu, Z. Y. Zheng, and Q. Z. Yu, “Blast waves produced by interactions of femtosecond laser pulses with water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056403 (2003).
    [Crossref] [PubMed]
  20. X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
    [Crossref]
  21. X. Zeng, X. Mao, S. S. Mao, S.- B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
  22. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
    [Crossref] [PubMed]
  23. H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97(6), 061117 (2010).
    [Crossref]
  24. S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picoseconds laser ablation of solids,” Appl. Phys. Lett. 77(16), 2464–2466 (2000).
    [Crossref]
  25. N. M. Bulgakova and A. V. Bulgakov, “Comment on “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum”,” Phys. Rev. Lett. 101(9), 099701 (2008).
    [Crossref] [PubMed]
  26. J. König, S. Nolte, and A. Tünnermann, “Plasma evolution during metal ablation with ultrashort laser pulses,” Opt. Express 13(26), 10597–10607 (2005).
    [Crossref] [PubMed]
  27. A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
    [Crossref]
  28. V. V. Bukin, S. V. Garnov, A. A. Malyutin, and V. V. Strelkov, “Femtosecond laser optical gas breakdown microplasma: the ionization and postionisation dynamics,” Quantum Electron. 37(10), 961–966 (2007).
    [Crossref]
  29. X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express 18(25), 26007–26017 (2010).
    [Crossref] [PubMed]
  30. W. Hu, Y. C. Shin, and G. King, “Early-stage plasma dynamics with air ionization during ultrafast laser ablation of metal,” Phys. Plasmas 18(9), 093302 (2011).
    [Crossref]
  31. N. Zhang, Z. Wu, K. Xu, and X. Zhu, “Characteristics of micro air plasma produced by double femtosecond laser pulses,” Opt. Express 20(3), 2528–2538 (2012).
    [Crossref] [PubMed]
  32. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (CRC Press, 1993).

2014 (1)

2012 (1)

2011 (3)

H. Hu, X. Wang, and H. Zhai, “Neutrals ejection in intense femtosecond laser ablation,” Opt. Lett. 36(2), 124–126 (2011).
[Crossref] [PubMed]

W. Hu, Y. C. Shin, and G. King, “Early-stage plasma dynamics with air ionization during ultrafast laser ablation of metal,” Phys. Plasmas 18(9), 093302 (2011).
[Crossref]

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

2010 (2)

H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97(6), 061117 (2010).
[Crossref]

X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express 18(25), 26007–26017 (2010).
[Crossref] [PubMed]

2009 (2)

F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17(2), 419–425 (2009).
[Crossref] [PubMed]

A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95(3), 034107 (2009).
[Crossref]

2008 (4)

N. M. Bulgakova and A. V. Bulgakov, “Comment on “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum”,” Phys. Rev. Lett. 101(9), 099701 (2008).
[Crossref] [PubMed]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

W. Tan, H. Liu, J. Si, and X. Hou, “Control of the gated spectra with narrow bandwidth from a supercontinuum using ultrafast optical Kerr gate of bismuth glass,” Appl. Phys. Lett. 93(5), 051109 (2008).
[Crossref]

H. Liu, W. Tan, J. Si, X. Hou, and X. Hou, “Acquisition of gated spectra from a supercontinuum using ultrafast optical Kerr gate of lead phthalocyanine-doped hybrid glasses,” Opt. Express 16(17), 13486–13491 (2008).
[Crossref] [PubMed]

2007 (4)

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15(9), 5674–5686 (2007).
[Crossref] [PubMed]

V. V. Bukin, S. V. Garnov, A. A. Malyutin, and V. V. Strelkov, “Femtosecond laser optical gas breakdown microplasma: the ionization and postionisation dynamics,” Quantum Electron. 37(10), 961–966 (2007).
[Crossref]

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

2006 (1)

X. Zeng, X. Mao, S. S. Mao, S.- B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).

2005 (3)

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[Crossref]

J. König, S. Nolte, and A. Tünnermann, “Plasma evolution during metal ablation with ultrashort laser pulses,” Opt. Express 13(26), 10597–10607 (2005).
[Crossref] [PubMed]

2004 (2)

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

M. Sakakura and M. Terazima, “Oscillation of the refractive index at the focal region of a femtosecond laser pulse inside a glass,” Opt. Lett. 29(13), 1548–1550 (2004).
[Crossref] [PubMed]

2003 (3)

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

W. G. Roeterdink, L. B. F. Juurlink, O. P. H. Vaughan, J. Dura Diez, M. Bonn, and A. W. Kleyn, “Coulomb explosion in femtosecond laser ablation of Si(111),” Appl. Phys. Lett. 82(23), 4190–4192 (2003).
[Crossref]

Y. T. Li, J. Zhang, H. Teng, K. Li, X. Y. Peng, Z. Jin, X. Lu, Z. Y. Zheng, and Q. Z. Yu, “Blast waves produced by interactions of femtosecond laser pulses with water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056403 (2003).
[Crossref] [PubMed]

2002 (1)

X. Wang and X. Xu, “Thermoelastic wave in metal induced by ultrafast laser pulses,” J. Therm. Stresses 25(5), 457–473 (2002).
[Crossref]

2001 (1)

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[Crossref] [PubMed]

2000 (2)

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picoseconds laser ablation of solids,” Appl. Phys. Lett. 77(16), 2464–2466 (2000).
[Crossref]

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Acta, Part B 55(11), 1771–1785 (2000).
[Crossref]

1999 (1)

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).
[Crossref]

Alexander, D. R.

Altucci, C.

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

Amoruso, S.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[Crossref]

Anderson, T. P.

Angel, S. M.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[Crossref] [PubMed]

Ausanio, G.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[Crossref]

Berg, M. A.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[Crossref] [PubMed]

Bolshov, M.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Acta, Part B 55(11), 1771–1785 (2000).
[Crossref]

Bonn, M.

W. G. Roeterdink, L. B. F. Juurlink, O. P. H. Vaughan, J. Dura Diez, M. Bonn, and A. W. Kleyn, “Coulomb explosion in femtosecond laser ablation of Si(111),” Appl. Phys. Lett. 82(23), 4190–4192 (2003).
[Crossref]

Bruce, J.

Bruno, A.

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

Bruzzese, R.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[Crossref]

Bukin, V. V.

V. V. Bukin, S. V. Garnov, A. A. Malyutin, and V. V. Strelkov, “Femtosecond laser optical gas breakdown microplasma: the ionization and postionisation dynamics,” Quantum Electron. 37(10), 961–966 (2007).
[Crossref]

Bulgakov, A. V.

N. M. Bulgakova and A. V. Bulgakov, “Comment on “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum”,” Phys. Rev. Lett. 101(9), 099701 (2008).
[Crossref] [PubMed]

Bulgakova, N. M.

N. M. Bulgakova and A. V. Bulgakov, “Comment on “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum”,” Phys. Rev. Lett. 101(9), 099701 (2008).
[Crossref] [PubMed]

Che, Y.

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

Chen, T.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

Chen, Y.

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

de Lisio, C.

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

De Lucia, F. C.

Dura Diez, J.

W. G. Roeterdink, L. B. F. Juurlink, O. P. H. Vaughan, J. Dura Diez, M. Bonn, and A. W. Kleyn, “Coulomb explosion in femtosecond laser ablation of Si(111),” Appl. Phys. Lett. 82(23), 4190–4192 (2003).
[Crossref]

Eland, K. L.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[Crossref] [PubMed]

Garnov, S. V.

V. V. Bukin, S. V. Garnov, A. A. Malyutin, and V. V. Strelkov, “Femtosecond laser optical gas breakdown microplasma: the ionization and postionisation dynamics,” Quantum Electron. 37(10), 961–966 (2007).
[Crossref]

Gold, D. M.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[Crossref] [PubMed]

Gottfried, J. L.

Greif, R.

X. Zeng, X. Mao, S. S. Mao, S.- B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picoseconds laser ablation of solids,” Appl. Phys. Lett. 77(16), 2464–2466 (2000).
[Crossref]

Hergenröder, R.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Acta, Part B 55(11), 1771–1785 (2000).
[Crossref]

Hirao, K.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15(9), 5674–5686 (2007).
[Crossref] [PubMed]

Hou, X.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

H. Liu, W. Tan, J. Si, X. Hou, and X. Hou, “Acquisition of gated spectra from a supercontinuum using ultrafast optical Kerr gate of lead phthalocyanine-doped hybrid glasses,” Opt. Express 16(17), 13486–13491 (2008).
[Crossref] [PubMed]

H. Liu, W. Tan, J. Si, X. Hou, and X. Hou, “Acquisition of gated spectra from a supercontinuum using ultrafast optical Kerr gate of lead phthalocyanine-doped hybrid glasses,” Opt. Express 16(17), 13486–13491 (2008).
[Crossref] [PubMed]

W. Tan, H. Liu, J. Si, and X. Hou, “Control of the gated spectra with narrow bandwidth from a supercontinuum using ultrafast optical Kerr gate of bismuth glass,” Appl. Phys. Lett. 93(5), 051109 (2008).
[Crossref]

Hu, H.

H. Hu, X. Wang, and H. Zhai, “Neutrals ejection in intense femtosecond laser ablation,” Opt. Lett. 36(2), 124–126 (2011).
[Crossref] [PubMed]

H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97(6), 061117 (2010).
[Crossref]

Hu, W.

W. Hu, Y. C. Shin, and G. King, “Early-stage plasma dynamics with air ionization during ultrafast laser ablation of metal,” Phys. Plasmas 18(9), 093302 (2011).
[Crossref]

Hu, Z.

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

Jin, Z.

Y. T. Li, J. Zhang, H. Teng, K. Li, X. Y. Peng, Z. Jin, X. Lu, Z. Y. Zheng, and Q. Z. Yu, “Blast waves produced by interactions of femtosecond laser pulses with water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056403 (2003).
[Crossref] [PubMed]

Juurlink, L. B. F.

W. G. Roeterdink, L. B. F. Juurlink, O. P. H. Vaughan, J. Dura Diez, M. Bonn, and A. W. Kleyn, “Coulomb explosion in femtosecond laser ablation of Si(111),” Appl. Phys. Lett. 82(23), 4190–4192 (2003).
[Crossref]

Kanehira, S.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

Kawashima, H.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

King, G.

W. Hu, Y. C. Shin, and G. King, “Early-stage plasma dynamics with air ionization during ultrafast laser ablation of metal,” Phys. Plasmas 18(9), 093302 (2011).
[Crossref]

Kleyn, A. W.

W. G. Roeterdink, L. B. F. Juurlink, O. P. H. Vaughan, J. Dura Diez, M. Bonn, and A. W. Kleyn, “Coulomb explosion in femtosecond laser ablation of Si(111),” Appl. Phys. Lett. 82(23), 4190–4192 (2003).
[Crossref]

Kolesik, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).
[Crossref]

König, J.

Lai, T.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[Crossref] [PubMed]

Lewis, L. J.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

Li, K.

Y. T. Li, J. Zhang, H. Teng, K. Li, X. Y. Peng, Z. Jin, X. Lu, Z. Y. Zheng, and Q. Z. Yu, “Blast waves produced by interactions of femtosecond laser pulses with water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056403 (2003).
[Crossref] [PubMed]

Li, Y. T.

Y. T. Li, J. Zhang, H. Teng, K. Li, X. Y. Peng, Z. Jin, X. Lu, Z. Y. Zheng, and Q. Z. Yu, “Blast waves produced by interactions of femtosecond laser pulses with water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056403 (2003).
[Crossref] [PubMed]

Liu, B.

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

Liu, F.

Liu, H.

H. Liu, W. Tan, J. Si, X. Hou, and X. Hou, “Acquisition of gated spectra from a supercontinuum using ultrafast optical Kerr gate of lead phthalocyanine-doped hybrid glasses,” Opt. Express 16(17), 13486–13491 (2008).
[Crossref] [PubMed]

W. Tan, H. Liu, J. Si, and X. Hou, “Control of the gated spectra with narrow bandwidth from a supercontinuum using ultrafast optical Kerr gate of bismuth glass,” Appl. Phys. Lett. 93(5), 051109 (2008).
[Crossref]

Liu, X.

Liu, X. L.

Lorazo, P.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

Lu, X.

X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express 18(25), 26007–26017 (2010).
[Crossref] [PubMed]

Y. T. Li, J. Zhang, H. Teng, K. Li, X. Y. Peng, Z. Jin, X. Lu, Z. Y. Zheng, and Q. Z. Yu, “Blast waves produced by interactions of femtosecond laser pulses with water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056403 (2003).
[Crossref] [PubMed]

Ma, J. L.

Mahmood, A. S.

A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95(3), 034107 (2009).
[Crossref]

Malyutin, A. A.

V. V. Bukin, S. V. Garnov, A. A. Malyutin, and V. V. Strelkov, “Femtosecond laser optical gas breakdown microplasma: the ionization and postionisation dynamics,” Quantum Electron. 37(10), 961–966 (2007).
[Crossref]

Mao, S. S.

X. Zeng, X. Mao, S. S. Mao, S.- B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picoseconds laser ablation of solids,” Appl. Phys. Lett. 77(16), 2464–2466 (2000).
[Crossref]

Mao, X.

X. Zeng, X. Mao, S. S. Mao, S.- B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picoseconds laser ablation of solids,” Appl. Phys. Lett. 77(16), 2464–2466 (2000).
[Crossref]

Mao, X. L.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

Margetic, V.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Acta, Part B 55(11), 1771–1785 (2000).
[Crossref]

Martirosyan, A. E.

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

Meunier, M.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

Miura, K.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15(9), 5674–5686 (2007).
[Crossref] [PubMed]

Miziolek, A. W.

Mlejnek, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).
[Crossref]

Moloney, J. V.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).
[Crossref]

Niemax, K.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Acta, Part B 55(11), 1771–1785 (2000).
[Crossref]

Nolte, S.

Pakulev, A.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Acta, Part B 55(11), 1771–1785 (2000).
[Crossref]

Pan, X.

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

Parigger, C. G.

Peng, X. Y.

Y. T. Li, J. Zhang, H. Teng, K. Li, X. Y. Peng, Z. Jin, X. Lu, Z. Y. Zheng, and Q. Z. Yu, “Blast waves produced by interactions of femtosecond laser pulses with water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056403 (2003).
[Crossref] [PubMed]

Porzio, A.

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

Roeterdink, W. G.

W. G. Roeterdink, L. B. F. Juurlink, O. P. H. Vaughan, J. Dura Diez, M. Bonn, and A. W. Kleyn, “Coulomb explosion in femtosecond laser ablation of Si(111),” Appl. Phys. Lett. 82(23), 4190–4192 (2003).
[Crossref]

Russo, R. E.

X. Zeng, X. Mao, S. S. Mao, S.- B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picoseconds laser ablation of solids,” Appl. Phys. Lett. 77(16), 2464–2466 (2000).
[Crossref]

Sakakura, M.

Shimotsuma, Y.

Shin, Y. C.

W. Hu, Y. C. Shin, and G. King, “Early-stage plasma dynamics with air ionization during ultrafast laser ablation of metal,” Phys. Plasmas 18(9), 093302 (2011).
[Crossref]

Si, J.

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

W. Tan, H. Liu, J. Si, and X. Hou, “Control of the gated spectra with narrow bandwidth from a supercontinuum using ultrafast optical Kerr gate of bismuth glass,” Appl. Phys. Lett. 93(5), 051109 (2008).
[Crossref]

H. Liu, W. Tan, J. Si, X. Hou, and X. Hou, “Acquisition of gated spectra from a supercontinuum using ultrafast optical Kerr gate of lead phthalocyanine-doped hybrid glasses,” Opt. Express 16(17), 13486–13491 (2008).
[Crossref] [PubMed]

Sivakumar, M.

A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95(3), 034107 (2009).
[Crossref]

Solimeno, S.

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

Stockhaus, A.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Acta, Part B 55(11), 1771–1785 (2000).
[Crossref]

Stratis, D. N.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[Crossref] [PubMed]

Strelkov, V. V.

V. V. Bukin, S. V. Garnov, A. A. Malyutin, and V. V. Strelkov, “Femtosecond laser optical gas breakdown microplasma: the ionization and postionisation dynamics,” Quantum Electron. 37(10), 961–966 (2007).
[Crossref]

Suzuki, J.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

Tan, B.

A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95(3), 034107 (2009).
[Crossref]

Tan, W.

W. Tan, H. Liu, J. Si, and X. Hou, “Control of the gated spectra with narrow bandwidth from a supercontinuum using ultrafast optical Kerr gate of bismuth glass,” Appl. Phys. Lett. 93(5), 051109 (2008).
[Crossref]

H. Liu, W. Tan, J. Si, X. Hou, and X. Hou, “Acquisition of gated spectra from a supercontinuum using ultrafast optical Kerr gate of lead phthalocyanine-doped hybrid glasses,” Opt. Express 16(17), 13486–13491 (2008).
[Crossref] [PubMed]

Tanaka, S.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

Teng, H.

Y. T. Li, J. Zhang, H. Teng, K. Li, X. Y. Peng, Z. Jin, X. Lu, Z. Y. Zheng, and Q. Z. Yu, “Blast waves produced by interactions of femtosecond laser pulses with water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056403 (2003).
[Crossref] [PubMed]

Terazima, M.

Tünnermann, A.

Vaughan, O. P. H.

W. G. Roeterdink, L. B. F. Juurlink, O. P. H. Vaughan, J. Dura Diez, M. Bonn, and A. W. Kleyn, “Coulomb explosion in femtosecond laser ablation of Si(111),” Appl. Phys. Lett. 82(23), 4190–4192 (2003).
[Crossref]

Venkatakrishnan, K.

A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95(3), 034107 (2009).
[Crossref]

Vitiello, M.

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[Crossref]

Wang, M.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Wang, P.

H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97(6), 061117 (2010).
[Crossref]

Wang, X.

H. Hu, X. Wang, and H. Zhai, “Neutrals ejection in intense femtosecond laser ablation,” Opt. Lett. 36(2), 124–126 (2011).
[Crossref] [PubMed]

H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97(6), 061117 (2010).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[Crossref]

X. Wang and X. Xu, “Thermoelastic wave in metal induced by ultrafast laser pulses,” J. Therm. Stresses 25(5), 457–473 (2002).
[Crossref]

Wen, S.- B.

X. Zeng, X. Mao, S. S. Mao, S.- B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).

Wright, E. M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).
[Crossref]

Wu, Z.

Xi, T. T.

Xu, K.

Xu, X.

X. Wang and X. Xu, “Thermoelastic wave in metal induced by ultrafast laser pulses,” J. Therm. Stresses 25(5), 457–473 (2002).
[Crossref]

Yamaji, M.

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

Yang, J.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Yu, Q. Z.

Y. T. Li, J. Zhang, H. Teng, K. Li, X. Y. Peng, Z. Jin, X. Lu, Z. Y. Zheng, and Q. Z. Yu, “Blast waves produced by interactions of femtosecond laser pulses with water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056403 (2003).
[Crossref] [PubMed]

Zeng, X.

X. Zeng, X. Mao, S. S. Mao, S.- B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

Zhai, H.

H. Hu, X. Wang, and H. Zhai, “Neutrals ejection in intense femtosecond laser ablation,” Opt. Lett. 36(2), 124–126 (2011).
[Crossref] [PubMed]

H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97(6), 061117 (2010).
[Crossref]

Zhang, J.

X. L. Liu, X. Lu, X. Liu, T. T. Xi, F. Liu, J. L. Ma, and J. Zhang, “Tightly focused femtosecond laser pulse in air: from filamentation to breakdown,” Opt. Express 18(25), 26007–26017 (2010).
[Crossref] [PubMed]

Y. T. Li, J. Zhang, H. Teng, K. Li, X. Y. Peng, Z. Jin, X. Lu, Z. Y. Zheng, and Q. Z. Yu, “Blast waves produced by interactions of femtosecond laser pulses with water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056403 (2003).
[Crossref] [PubMed]

Zhang, N.

N. Zhang, Z. Wu, K. Xu, and X. Zhu, “Characteristics of micro air plasma produced by double femtosecond laser pulses,” Opt. Express 20(3), 2528–2538 (2012).
[Crossref] [PubMed]

H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97(6), 061117 (2010).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Zheng, Z. Y.

Y. T. Li, J. Zhang, H. Teng, K. Li, X. Y. Peng, Z. Jin, X. Lu, Z. Y. Zheng, and Q. Z. Yu, “Blast waves produced by interactions of femtosecond laser pulses with water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056403 (2003).
[Crossref] [PubMed]

Zhu, X.

N. Zhang, Z. Wu, K. Xu, and X. Zhu, “Characteristics of micro air plasma produced by double femtosecond laser pulses,” Opt. Express 20(3), 2528–2538 (2012).
[Crossref] [PubMed]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Zuhlke, C. A.

Acta, Part B (1)

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Acta, Part B 55(11), 1771–1785 (2000).
[Crossref]

Appl. Phys. Lett. (8)

A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95(3), 034107 (2009).
[Crossref]

M. Yamaji, H. Kawashima, J. Suzuki, and S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008).
[Crossref]

W. G. Roeterdink, L. B. F. Juurlink, O. P. H. Vaughan, J. Dura Diez, M. Bonn, and A. W. Kleyn, “Coulomb explosion in femtosecond laser ablation of Si(111),” Appl. Phys. Lett. 82(23), 4190–4192 (2003).
[Crossref]

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

X. Zeng, X. Mao, S. S. Mao, S.- B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).

H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97(6), 061117 (2010).
[Crossref]

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picoseconds laser ablation of solids,” Appl. Phys. Lett. 77(16), 2464–2466 (2000).
[Crossref]

W. Tan, H. Liu, J. Si, and X. Hou, “Control of the gated spectra with narrow bandwidth from a supercontinuum using ultrafast optical Kerr gate of bismuth glass,” Appl. Phys. Lett. 93(5), 051109 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

Appl. Spectrosc. (1)

Fresenius J. Anal. Chem. (1)

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001).
[Crossref] [PubMed]

J. Appl. Phys. (2)

A. E. Martirosyan, C. Altucci, A. Bruno, C. de Lisio, A. Porzio, and S. Solimeno, “Time evolution of plasma afterglow produced by femtosecond laser pulses,” J. Appl. Phys. 96(10), 5450–5455 (2004).
[Crossref]

T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, “Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 110(7), 073106 (2011).
[Crossref]

J. Therm. Stresses (1)

X. Wang and X. Xu, “Thermoelastic wave in metal induced by ultrafast laser pulses,” J. Therm. Stresses 25(5), 457–473 (2002).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Plasmas (1)

W. Hu, Y. C. Shin, and G. King, “Early-stage plasma dynamics with air ionization during ultrafast laser ablation of metal,” Phys. Plasmas 18(9), 093302 (2011).
[Crossref]

Phys. Rev. B (1)

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Y. T. Li, J. Zhang, H. Teng, K. Li, X. Y. Peng, Z. Jin, X. Lu, Z. Y. Zheng, and Q. Z. Yu, “Blast waves produced by interactions of femtosecond laser pulses with water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056403 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

N. M. Bulgakova and A. V. Bulgakov, “Comment on “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum”,” Phys. Rev. Lett. 101(9), 099701 (2008).
[Crossref] [PubMed]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).
[Crossref]

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91(22), 225502 (2003).
[Crossref] [PubMed]

Quantum Electron. (1)

V. V. Bukin, S. V. Garnov, A. A. Malyutin, and V. V. Strelkov, “Femtosecond laser optical gas breakdown microplasma: the ionization and postionisation dynamics,” Quantum Electron. 37(10), 961–966 (2007).
[Crossref]

Other (1)

L. I. Sedov, Similarity and Dimensional Methods in Mechanics (CRC Press, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Shadowgraphs of shockwave (S1) induced by laser-induced air breakdown at time delays from 20 to 160 ps. The fringes paralleled to the target surface were due to the edge diffraction of probe laser beam. The ellipse of dotted line denoted the focus position.
Fig. 2
Fig. 2 Shadowgraphs of a second shockwave (S2) and material ejection induced by phase explosion at time delays from 200 ps to 4 ns.
Fig. 3
Fig. 3 Radial and longitudinal expansion of shockwave (a) S1and (b) S2 as a function of time delay, respectively. (c) The dependence of radial and longitudinal expansion of shockwave S2 on time delay, respectively.
Fig. 4
Fig. 4 Shadowgraphs of femtosecond laser pulse ablating aluminum target recorded at (a) 7 ns and (b) 15 ns time delay, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R=λ ( E ρ ) 1/(2+β) t 2/(2+β)

Metrics