Abstract

We report here fabrication of interdigitated photoconductive antenna (iPCA) terahertz (THz) emitters based on plasmonic electrode design. Novel design of this iPCA enables it to work without microlens array focusing, which is otherwise required for photo excitation of selective photoconductive regions to avoid the destructive interference of emitted THz radiation from oppositely biased regions. Benefit of iPCA over single active region PCA is, photo excitation can be done at larger area hence avoiding the saturation effect at higher optical excitation density. The emitted THz radiation power from plasmonic-iPCAs is ~2 times more than the single active region plasmonic PCA at 200 mW optical excitation, which will further increase at higher optical powers. This design is expected to reduce fabrication cost of photoconductive THz sources and detectors.

© 2015 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev.104(4), 1759–1780 (2004).
    [Crossref] [PubMed]
  2. G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett.93(9), 091110 (2008).
    [Crossref]
  3. G. Matthaus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B96(2-3), 233–235 (2009).
    [Crossref]
  4. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005).
    [Crossref]
  5. M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett.91(18), 181124 (2007).
    [Crossref]
  6. S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
    [Crossref] [PubMed]
  7. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun.4, 1622 (2013).
    [Crossref] [PubMed]
  8. P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett.72(17), 2069–2071 (1998).
    [Crossref]
  9. A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett.104(6), 063501 (2014).
    [Crossref]
  10. J. T. Darrow, X. C. Zhang, and D. H. Auston, “Power scaling of large aperture photoconducting antennas,” Appl. Phys. Lett.58(1), 25–27 (1991).
    [Crossref]
  11. P. K. Benicewicz, J. P. Roberts, and A. J. Taylor, “Scaling of terahertz radiation from large-aperture biased photoconductors,” J. Opt. Soc. Am. B11(12), 2533–2546 (1994).
    [Crossref]
  12. D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett.88(16), 161117 (2006).
    [Crossref]
  13. S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of Electrical and optical carrier injection,” Appl. Phys. Lett.59(16), 1972–1974 (1991).
    [Crossref]
  14. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys.109(6), 061301 (2011).
    [Crossref]

2014 (1)

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett.104(6), 063501 (2014).
[Crossref]

2013 (1)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun.4, 1622 (2013).
[Crossref] [PubMed]

2012 (1)

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[Crossref] [PubMed]

2011 (1)

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys.109(6), 061301 (2011).
[Crossref]

2009 (1)

G. Matthaus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B96(2-3), 233–235 (2009).
[Crossref]

2008 (1)

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett.93(9), 091110 (2008).
[Crossref]

2007 (1)

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett.91(18), 181124 (2007).
[Crossref]

2006 (1)

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett.88(16), 161117 (2006).
[Crossref]

2005 (1)

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005).
[Crossref]

2004 (1)

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev.104(4), 1759–1780 (2004).
[Crossref] [PubMed]

1998 (1)

P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett.72(17), 2069–2071 (1998).
[Crossref]

1994 (1)

1991 (2)

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of Electrical and optical carrier injection,” Appl. Phys. Lett.59(16), 1972–1974 (1991).
[Crossref]

J. T. Darrow, X. C. Zhang, and D. H. Auston, “Power scaling of large aperture photoconducting antennas,” Appl. Phys. Lett.58(1), 25–27 (1991).
[Crossref]

Ahn, J.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Andrews, S. R.

P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett.72(17), 2069–2071 (1998).
[Crossref]

Auston, D. H.

J. T. Darrow, X. C. Zhang, and D. H. Auston, “Power scaling of large aperture photoconducting antennas,” Appl. Phys. Lett.58(1), 25–27 (1991).
[Crossref]

Awad, M.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett.91(18), 181124 (2007).
[Crossref]

Benicewicz, P. K.

Berry, C. W.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun.4, 1622 (2013).
[Crossref] [PubMed]

Citrin, D. S.

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett.88(16), 161117 (2006).
[Crossref]

Cluff, J. A.

P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett.72(17), 2069–2071 (1998).
[Crossref]

Darrow, J. T.

J. T. Darrow, X. C. Zhang, and D. H. Auston, “Power scaling of large aperture photoconducting antennas,” Appl. Phys. Lett.58(1), 25–27 (1991).
[Crossref]

Dekorsy, T.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005).
[Crossref]

Döhler, G. H.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys.109(6), 061301 (2011).
[Crossref]

Dreyhaupt, A.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005).
[Crossref]

Gossard, A. C.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys.109(6), 061301 (2011).
[Crossref]

Grischkowsky, D.

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of Electrical and optical carrier injection,” Appl. Phys. Lett.59(16), 1972–1974 (1991).
[Crossref]

Hashemi, M. R.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun.4, 1622 (2013).
[Crossref] [PubMed]

Helm, M.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005).
[Crossref]

Herfort, J.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett.91(18), 181124 (2007).
[Crossref]

Hohmuth, R.

G. Matthaus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett.93(9), 091110 (2008).
[Crossref]

Huggard, P. G.

P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett.72(17), 2069–2071 (1998).
[Crossref]

Jarrahi, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun.4, 1622 (2013).
[Crossref] [PubMed]

Jeong, K. H.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Jin, K. H.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Kim, D. S.

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett.88(16), 161117 (2006).
[Crossref]

Kurz, H.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett.91(18), 181124 (2007).
[Crossref]

Malzer, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys.109(6), 061301 (2011).
[Crossref]

Matthaus, G.

G. Matthaus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B96(2-3), 233–235 (2009).
[Crossref]

Matthäus, G.

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett.93(9), 091110 (2008).
[Crossref]

Nagel, M.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett.91(18), 181124 (2007).
[Crossref]

Nanal, V.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett.104(6), 063501 (2014).
[Crossref]

Nolte, S.

G. Matthaus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett.93(9), 091110 (2008).
[Crossref]

Notni, G.

G. Matthaus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett.93(9), 091110 (2008).
[Crossref]

Pal, S.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett.104(6), 063501 (2014).
[Crossref]

Park, S. G.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Pillay, R. G.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett.104(6), 063501 (2014).
[Crossref]

Ploog, K.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett.91(18), 181124 (2007).
[Crossref]

Prabhu, S. S.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett.104(6), 063501 (2014).
[Crossref]

Pradarutti, B.

G. Matthaus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett.93(9), 091110 (2008).
[Crossref]

Preu, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys.109(6), 061301 (2011).
[Crossref]

Ralph, S. E.

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of Electrical and optical carrier injection,” Appl. Phys. Lett.59(16), 1972–1974 (1991).
[Crossref]

Richter, W.

G. Matthaus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett.93(9), 091110 (2008).
[Crossref]

Riehemann, S.

G. Matthaus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett.93(9), 091110 (2008).
[Crossref]

Roberts, J. P.

Schmuttenmaer, C. A.

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev.104(4), 1759–1780 (2004).
[Crossref] [PubMed]

Shaw, C. J.

P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett.72(17), 2069–2071 (1998).
[Crossref]

Singh, A.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett.104(6), 063501 (2014).
[Crossref]

Surdi, H.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett.104(6), 063501 (2014).
[Crossref]

Taylor, A. J.

Tunnermann, A.

G. Matthaus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett.93(9), 091110 (2008).
[Crossref]

Unlu, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun.4, 1622 (2013).
[Crossref] [PubMed]

Voitsch, M.

G. Matthaus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B96(2-3), 233–235 (2009).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett.93(9), 091110 (2008).
[Crossref]

Wang, L. J.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys.109(6), 061301 (2011).
[Crossref]

Wang, N.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun.4, 1622 (2013).
[Crossref] [PubMed]

Winnerl, S.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005).
[Crossref]

Ye, J. C.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Yi, M.

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Zhang, X. C.

J. T. Darrow, X. C. Zhang, and D. H. Auston, “Power scaling of large aperture photoconducting antennas,” Appl. Phys. Lett.58(1), 25–27 (1991).
[Crossref]

ACS Nano (1)

S. G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K. H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012).
[Crossref] [PubMed]

Appl. Phys. B (1)

G. Matthaus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Large-area microlens emitters for powerful THz emission,” Appl. Phys. B96(2-3), 233–235 (2009).
[Crossref]

Appl. Phys. Lett. (8)

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005).
[Crossref]

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett.91(18), 181124 (2007).
[Crossref]

G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, “Microlens coupled interdigital photoconductive switch,” Appl. Phys. Lett.93(9), 091110 (2008).
[Crossref]

P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent efficiency of photoconducting THz transmitters and receivers,” Appl. Phys. Lett.72(17), 2069–2071 (1998).
[Crossref]

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett.104(6), 063501 (2014).
[Crossref]

J. T. Darrow, X. C. Zhang, and D. H. Auston, “Power scaling of large aperture photoconducting antennas,” Appl. Phys. Lett.58(1), 25–27 (1991).
[Crossref]

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz sources,” Appl. Phys. Lett.88(16), 161117 (2006).
[Crossref]

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: The role of Electrical and optical carrier injection,” Appl. Phys. Lett.59(16), 1972–1974 (1991).
[Crossref]

Chem. Rev. (1)

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev.104(4), 1759–1780 (2004).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys.109(6), 061301 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun.4, 1622 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics