Abstract

Computer Generated Holograms (CGH) are generated on computers; however, a great deal of computational power is required because the quality of the image is proportional to the number of point light sources of a 3D object. The Wavefront Recording Plane (WRP) method is an algorithm that enables reduction of the amount of calculations required. However, the WRP method also has a defect; it is not effective in the case of a 3D object with a deep structure. In this study, we propose two improved WRP methods: “Least Square Tilted WRP method” and “RANSAC Multi-Tilted WRP method.”

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display

Tomoyoshi Shimobaba, Hirotaka Nakayama, Nobuyuki Masuda, and Tomoyoshi Ito
Opt. Express 18(19) 19504-19509 (2010)

Computer-generated holograms by multiple wavefront recording plane method with occlusion culling

Athanasia Symeonidou, David Blinder, Adrian Munteanu, and Peter Schelkens
Opt. Express 23(17) 22149-22161 (2015)

Simple calculation of a computer-generated hologram for lensless holographic 3D projection using a nonuniform sampled wavefront recording plane

Chenliang Chang, Jun Wu, Yijun Qi, Caojin Yuan, Shouping Nie, and Jun Xia
Appl. Opt. 55(28) 7988-7996 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. C. Poon, ed., Digital Holography and Three-dimensional display: Principles and Applications, Springer (2006).
  2. N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T. Ito, “Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system,” Appl. Opt. 51(30), 7303–7307 (2012).
    [Crossref] [PubMed]
  3. S. C. Kim and E. S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
    [Crossref] [PubMed]
  4. H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging 2009, DWC4 (2009).
  5. T. Tommasi and B. Bianco, “Computer-generated holograms of tilted planes by a spatial frequency approach,” J. Opt. Soc. Am. A 10(2), 299305 (1993).
    [Crossref]
  6. K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20(9), 1755–1762 (2003).
    [Crossref] [PubMed]
  7. N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013).
    [Crossref] [PubMed]
  8. M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
    [Crossref]
  9. Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms,” Opt. Express 20(19), 21645–21655 (2012).
    [Crossref] [PubMed]
  10. T. Shimobaba, S. Hishinuma, and T. Ito, “Special-Purpose Computer for Holography HORN-4 with recurrence algorithm,” Comput. Phys. Commun. 148(2), 160–170 (2002).
    [Crossref]
  11. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
    [Crossref] [PubMed]
  12. T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18(19), 19504–19509 (2010).
    [Crossref] [PubMed]
  13. P. Tsang, W.-K. Cheung, T.-C. Poon, and C. Zhou, “Holographic video at 40 frames per second for 4-million object points,” Opt. Express 19(16), 15205–15211 (2011).
    [Crossref] [PubMed]
  14. J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express 20(4), 4018–4023 (2012).
    [Crossref] [PubMed]
  15. T. Shimobaba, T. Kakue, N. Masuda, Y. Ichihashi, K. Yamamoto, T. Ito, “Computer holography using wavefront recording method, ” Digital Holography and Three-Dimensional Imaging(DH) DH2013, DTu1A.2 (2013).
  16. A.-H. Phan, M. A. Alam, S.-H. Jeon, J.-H. Lee, and N. Kim, “Fast hologram generation of long-depth object using multiple wavefront recording planes,” Proc. SPIE 9006, 900612 (2014).
    [Crossref]
  17. D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach (2nd Edition), Prentice Hall (2011).

2014 (1)

A.-H. Phan, M. A. Alam, S.-H. Jeon, J.-H. Lee, and N. Kim, “Fast hologram generation of long-depth object using multiple wavefront recording planes,” Proc. SPIE 9006, 900612 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (1)

2010 (1)

2009 (2)

T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
[Crossref] [PubMed]

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging 2009, DWC4 (2009).

2008 (1)

2003 (1)

2002 (1)

T. Shimobaba, S. Hishinuma, and T. Ito, “Special-Purpose Computer for Holography HORN-4 with recurrence algorithm,” Comput. Phys. Commun. 148(2), 160–170 (2002).
[Crossref]

1993 (2)

T. Tommasi and B. Bianco, “Computer-generated holograms of tilted planes by a spatial frequency approach,” J. Opt. Soc. Am. A 10(2), 299305 (1993).
[Crossref]

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Alam, M. A.

A.-H. Phan, M. A. Alam, S.-H. Jeon, J.-H. Lee, and N. Kim, “Fast hologram generation of long-depth object using multiple wavefront recording planes,” Proc. SPIE 9006, 900612 (2014).
[Crossref]

Bianco, B.

T. Tommasi and B. Bianco, “Computer-generated holograms of tilted planes by a spatial frequency approach,” J. Opt. Soc. Am. A 10(2), 299305 (1993).
[Crossref]

Cheung, W.-K.

Hishinuma, S.

T. Shimobaba, S. Hishinuma, and T. Ito, “Special-Purpose Computer for Holography HORN-4 with recurrence algorithm,” Comput. Phys. Commun. 148(2), 160–170 (2002).
[Crossref]

Honda, T.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Hoshino, H.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Ichihashi, Y.

Ito, T.

Jeon, S.-H.

A.-H. Phan, M. A. Alam, S.-H. Jeon, J.-H. Lee, and N. Kim, “Fast hologram generation of long-depth object using multiple wavefront recording planes,” Proc. SPIE 9006, 900612 (2014).
[Crossref]

Kakue, T.

Kim, E. S.

Kim, N.

A.-H. Phan, M. A. Alam, S.-H. Jeon, J.-H. Lee, and N. Kim, “Fast hologram generation of long-depth object using multiple wavefront recording planes,” Proc. SPIE 9006, 900612 (2014).
[Crossref]

Kim, S. C.

Kitayama, R.

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging 2009, DWC4 (2009).

Kurita, T.

Lee, J.-H.

A.-H. Phan, M. A. Alam, S.-H. Jeon, J.-H. Lee, and N. Kim, “Fast hologram generation of long-depth object using multiple wavefront recording planes,” Proc. SPIE 9006, 900612 (2014).
[Crossref]

Masuda, N.

Matsushima, K.

Nakayama, H.

Ohyama, N.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Oi, R.

Oikawa, M.

Okada, N.

Phan, A.-H.

A.-H. Phan, M. A. Alam, S.-H. Jeon, J.-H. Lee, and N. Kim, “Fast hologram generation of long-depth object using multiple wavefront recording planes,” Proc. SPIE 9006, 900612 (2014).
[Crossref]

Poon, T.-C.

Schimmel, H.

Senoh, T.

Shimobaba, T.

Shiraki, A.

Takada, N.

Tommasi, T.

T. Tommasi and B. Bianco, “Computer-generated holograms of tilted planes by a spatial frequency approach,” J. Opt. Soc. Am. A 10(2), 299305 (1993).
[Crossref]

Tsang, P.

Weng, J.

Wyrowski, F.

Yamaguchi, M.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Yamaguchi, T.

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging 2009, DWC4 (2009).

Yamamoto, K.

Yoshikawa, H.

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging 2009, DWC4 (2009).

Zhou, C.

Appl. Opt. (2)

Comput. Phys. Commun. (1)

T. Shimobaba, S. Hishinuma, and T. Ito, “Special-Purpose Computer for Holography HORN-4 with recurrence algorithm,” Comput. Phys. Commun. 148(2), 160–170 (2002).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Express (5)

Opt. Lett. (1)

OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging (1)

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging 2009, DWC4 (2009).

Proc. SPIE (2)

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

A.-H. Phan, M. A. Alam, S.-H. Jeon, J.-H. Lee, and N. Kim, “Fast hologram generation of long-depth object using multiple wavefront recording planes,” Proc. SPIE 9006, 900612 (2014).
[Crossref]

Other (3)

D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach (2nd Edition), Prentice Hall (2011).

T. Shimobaba, T. Kakue, N. Masuda, Y. Ichihashi, K. Yamamoto, T. Ito, “Computer holography using wavefront recording method, ” Digital Holography and Three-Dimensional Imaging(DH) DH2013, DTu1A.2 (2013).

T. C. Poon, ed., Digital Holography and Three-dimensional display: Principles and Applications, Springer (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Original WRP method.
Fig. 2
Fig. 2 Optimized WRP method.
Fig. 3
Fig. 3 Correction of the WRP decided by least square method.
Fig. 4
Fig. 4 The position gap and correction of the point in the case of setting CGH and WRP. (a) Parallel WRP to the CGH. (b) Tilted WRP (the propagation direction of the object light does not coincide with the normal direction of the CGH) . (c) Tilted WRP (the propagation direction of the object light coincides with the normal direction of the CGH).
Fig. 5
Fig. 5 Comparison of the numerical reconstruction images. (a) the case of Fig. 4(a). (b) the case of Fig. 4(b). (c) the case of Fig. 4(c).
Fig. 6
Fig. 6 RMT-WRP method.
Fig. 7
Fig. 7 Numerical reconstruction images of previous WRP and LST-WRP methods.
Fig. 8
Fig. 8 Numerical reconstruction images of previous WRP and RMT-WRP methods.

Tables (5)

Tables Icon

Table 1 Simulation parameter (LST-WRP).

Tables Icon

Table 2 Comparison of calculation time by WRP setting (First step).

Tables Icon

Table 3 Comparison of calculation time by WRP setting (Total).

Tables Icon

Table 4 Simulation parameter (RMT-WRP method).

Tables Icon

Table 5 Comparison of computation time of existing WRP method and RMT-WRP method.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U h (x,y)= i N U i ( r i )= i N A i r i exp(jk r i )

Metrics