Abstract

Energy of chirped dissipative solitons (DS) generated in fiber lasers may exceed a threshold of stimulated Raman scattering (SRS) leading to formation of a noisy Raman pulse (RP). As we demonstrated recently, a feedback loop providing re-injection of the Raman pulse into the laser cavity can form a Raman dissipative soliton (RDS) with similar characteristics to those of the main dissipative soliton. Here, we present the results of feedback optimization of the generated RDS spectra. First experimental results of coherent combining of DS and RDS are also shown.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Four wave mixing of conventional and Raman dissipative solitons from single fiber laser

Ekaterina A. Zlobina, Denis S. Kharenko, Sergey I. Kablukov, and Sergey A. Babin
Opt. Express 23(13) 16589-16594 (2015)

Linear dissipative soliton in an anomalous-dispersion fiber laser

Ruixin Wang, Yitang Dai, Feifei Yin, Kun Xu, Jianqiang Li, and Jintong Lin
Opt. Express 22(24) 29314-29320 (2014)

Generation of Raman dissipative solitons near 1.3 microns in a phosphosilicate-fiber cavity

Denis S. Kharenko, Vlad D. Efremov, Ekaterina A. Evmenova, and Sergey A. Babin
Opt. Express 26(12) 15084-15089 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Grelu and N. N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
    [Crossref]
  2. W. H. Renninger and F. W. Wise, “Dissipative soliton fiber laser,” in “Fiber Lasers,” O. G. Okhotnikov, ed. (Wiley, 2012), pp. 97–134.
  3. F. O. Ilday, J. R. Buckley, W. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
    [Crossref] [PubMed]
  4. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408–2410 (2007).
    [Crossref] [PubMed]
  5. C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, “Self-starting self-similar all-polarization maintaining Yb-doped fiber laser,” Opt. Express 13, 9346–9351 (2005).
    [Crossref] [PubMed]
  6. A. Chong, W. H. Renninger, and F. W. Wise, “Environmentally stable all-normal-dispersion femtosecond fiber laser,” Opt. Lett. 33, 1071–1073 (2008).
    [Crossref] [PubMed]
  7. M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20, 22669–22674 (2012).
    [Crossref] [PubMed]
  8. C. Aguergaray, A. Runge, M. Erkintalo, and N. G. R. Broderick, “Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability,” Opt. Lett. 38, 2644–2646 (2013).
    [Crossref] [PubMed]
  9. D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly-chirped dissipative soliton oscillator,” Opt. Lett. 37, 4104–4106 (2012).
    [Crossref] [PubMed]
  10. A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express 21, 20556–20564 (2013).
    [Crossref] [PubMed]
  11. S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
    [Crossref] [PubMed]
  12. A. Sokolov, D. Walker, D. Yavuz, G. Yin, and S. Harris, “Raman Generation by Phased and Antiphased Molecular States,” Phys. Rev. Lett. 85, 562–565 (2000).
    [Crossref] [PubMed]
  13. C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7, 875–882 (2013).
    [Crossref]
  14. L. K. Oxenløwe, “Optical communications: Single-laser super-channel,” Nat. Photonics 5, 329–331 (2011).
    [Crossref]

2014 (1)

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (3)

2011 (1)

L. K. Oxenløwe, “Optical communications: Single-laser super-channel,” Nat. Photonics 5, 329–331 (2011).
[Crossref]

2008 (1)

2007 (1)

2005 (1)

2004 (1)

F. O. Ilday, J. R. Buckley, W. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref] [PubMed]

2000 (1)

A. Sokolov, D. Walker, D. Yavuz, G. Yin, and S. Harris, “Raman Generation by Phased and Antiphased Molecular States,” Phys. Rev. Lett. 85, 562–565 (2000).
[Crossref] [PubMed]

Aguergaray, C.

Akhmediev, N. N.

P. Grelu and N. N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Apolonski, A.

Apolonski, A. A.

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly-chirped dissipative soliton oscillator,” Opt. Lett. 37, 4104–4106 (2012).
[Crossref] [PubMed]

Babin, S. A.

Bednyakova, A. E.

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express 21, 20556–20564 (2013).
[Crossref] [PubMed]

Broderick, N. G. R.

Buckley, J. R.

F. O. Ilday, J. R. Buckley, W. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref] [PubMed]

Chong, A.

Clark, W.

F. O. Ilday, J. R. Buckley, W. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref] [PubMed]

Erkintalo, M.

Fedoruk, M. P.

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express 21, 20556–20564 (2013).
[Crossref] [PubMed]

Grelu, P.

P. Grelu and N. N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Harris, S.

A. Sokolov, D. Walker, D. Yavuz, G. Yin, and S. Harris, “Raman Generation by Phased and Antiphased Molecular States,” Phys. Rev. Lett. 85, 562–565 (2000).
[Crossref] [PubMed]

Hohmuth, R.

Ilday, F. O.

F. O. Ilday, J. R. Buckley, W. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref] [PubMed]

Kalashnikov, V. L.

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express 21, 20556–20564 (2013).
[Crossref] [PubMed]

Kharenko, D. S.

Limpert, J.

Nielsen, C. K.

Ortaç, B.

Oxenløwe, L. K.

L. K. Oxenløwe, “Optical communications: Single-laser super-channel,” Nat. Photonics 5, 329–331 (2011).
[Crossref]

Podivilov, E. V.

Renninger, W. H.

Richter, W.

Runge, A.

Schreiber, T.

Sokolov, A.

A. Sokolov, D. Walker, D. Yavuz, G. Yin, and S. Harris, “Raman Generation by Phased and Antiphased Molecular States,” Phys. Rev. Lett. 85, 562–565 (2000).
[Crossref] [PubMed]

Tünnermann, A.

Walker, D.

A. Sokolov, D. Walker, D. Yavuz, G. Yin, and S. Harris, “Raman Generation by Phased and Antiphased Molecular States,” Phys. Rev. Lett. 85, 562–565 (2000).
[Crossref] [PubMed]

Wise, F. W.

C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7, 875–882 (2013).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “Environmentally stable all-normal-dispersion femtosecond fiber laser,” Opt. Lett. 33, 1071–1073 (2008).
[Crossref] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408–2410 (2007).
[Crossref] [PubMed]

F. O. Ilday, J. R. Buckley, W. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref] [PubMed]

W. H. Renninger and F. W. Wise, “Dissipative soliton fiber laser,” in “Fiber Lasers,” O. G. Okhotnikov, ed. (Wiley, 2012), pp. 97–134.

Xu, C.

C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7, 875–882 (2013).
[Crossref]

Yavuz, D.

A. Sokolov, D. Walker, D. Yavuz, G. Yin, and S. Harris, “Raman Generation by Phased and Antiphased Molecular States,” Phys. Rev. Lett. 85, 562–565 (2000).
[Crossref] [PubMed]

Yin, G.

A. Sokolov, D. Walker, D. Yavuz, G. Yin, and S. Harris, “Raman Generation by Phased and Antiphased Molecular States,” Phys. Rev. Lett. 85, 562–565 (2000).
[Crossref] [PubMed]

Nat. Commun. (1)

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

P. Grelu and N. N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7, 875–882 (2013).
[Crossref]

L. K. Oxenløwe, “Optical communications: Single-laser super-channel,” Nat. Photonics 5, 329–331 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

A. Sokolov, D. Walker, D. Yavuz, G. Yin, and S. Harris, “Raman Generation by Phased and Antiphased Molecular States,” Phys. Rev. Lett. 85, 562–565 (2000).
[Crossref] [PubMed]

F. O. Ilday, J. R. Buckley, W. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref] [PubMed]

Other (1)

W. H. Renninger and F. W. Wise, “Dissipative soliton fiber laser,” in “Fiber Lasers,” O. G. Okhotnikov, ed. (Wiley, 2012), pp. 97–134.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The experimental setup.
Fig. 2
Fig. 2 Intracavity spectra in experiment (a) and simulation (b) corresponding to different feedback coefficients.
Fig. 3
Fig. 3 Energy of the intracavity DS and RDS in the experiment (triangles) and simulation (solid lines).
Fig. 4
Fig. 4 Compression of RDS and coherent combining of DS and RDS. (a) Autocorrelation trace of the compressed RDS at different level of feedback. (b) FROG trace of the coherently combined DS and RDS and their cross-correlation. (c) The detailed view of the interferometric autocorrelation trace of the coherently combined pulse. Inset – the same trace in a wide range.

Metrics