Abstract

Paired one- and two-dimensional metallic nanostructures are created directly by exposing a thin gold film to the interference pattern between ultraviolet laser pulses, where the gold film is coated onto a soft substrate and is sandwiched by another soft slab. Metallic films in the bright fringes are melted and transformed into nanodroplets that are ejected onto the soft slab forming stretchable nanoisland structures. The pattern of the remaining films is coincident with the dark fringes. Thus, complementary metallic nanostructure pairs were fabricated using a single laser pulse. Fano resonance can be observed in the spectroscopic response of the fabricated nanostructures for TM and TE polarizations simultaneously. This nanofabrication technique may provide an annealing-free approach for the fabrication of flexible metallic nanostructures on a large scale and with low cost.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large-scale fabrication of ordered metallic hybrid nanostructures

X. Chen, X. Wei, and K. Jiang
Opt. Express 16(16) 11888-11893 (2008)

Maskless multiple-beam laser lithography for large-area nanostructure/microstructure fabrication

Min Tang, Zai Chun Chen, Zhi Qiang Huang, Yoo Sang Choo, and Ming Hui Hong
Appl. Opt. 50(35) 6536-6542 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  2. Y. Li, J. Pan, P. Zhan, S. Zhu, N. Ming, Z. Wang, W. Han, X. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
    [Crossref] [PubMed]
  3. A. Benabbas, V. Halté, and J.-Y. Bigot, “Analytical model of the optical response of periodically structured metallic films,” Opt. Express 13(22), 8730–8745 (2005).
    [Crossref] [PubMed]
  4. Y. Lin, T. Zhai, Q. Ma, H. Liu, and X. Zhang, “Compact bandwidth-tunable polarization filter based on a plasmonic heterograting,” Opt. Express 21(9), 11315–11321 (2013).
    [Crossref] [PubMed]
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
    [Crossref]
  6. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
    [Crossref] [PubMed]
  7. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010).
    [Crossref] [PubMed]
  8. V. Malyarchuk, F. Hua, N. H. Mack, V. T. Velasquez, J. O. White, R. G. Nuzzo, and J. A. Rogers, “High performance plasmonic crystal sensor formed by soft nanoimprint lithography,” Opt. Express 13(15), 5669–5675 (2005).
    [Crossref] [PubMed]
  9. J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22(10), 1102–1110 (2010).
    [Crossref] [PubMed]
  10. S. Buzzi, M. Galli, M. Agio, and J. F. Löffler, “Silver high-aspect-ratio micro-and nanoimprinting for optical applications,” Appl. Phys. Lett. 94(22), 223115 (2009).
    [Crossref]
  11. T. Zhai, Y. Lin, H. Liu, and X. Zhang, “Solution-processable complex plasmonic quasicrystals,” Opt. Express 21(23), 28444–28449 (2013).
    [Crossref] [PubMed]
  12. X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
    [Crossref] [PubMed]
  13. T. Zhai, Y. Lin, H. Liu, S. Feng, and X. Zhang, “Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures,” Opt. Express 21(21), 24490–24496 (2013).
    [Crossref] [PubMed]
  14. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
    [Crossref] [PubMed]
  15. A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
    [Crossref] [PubMed]
  16. T. Zhai, Y. Wang, F. Liu, Z. Xu, S. Feng, H. Liu, and X. Zhang, “Controllable plasmonic transfer through laser-induced nanostructuring,” Appl. Phys. Express 7(6), 065201 (2014).
    [Crossref]
  17. T. Zhai, Y. Wang, Z. Xu, H. Liu, and X. Zhang, “Direct writing of flexible bimetallic nanoparticles for hybrid plasmon response,” Appl. Phys. Lett. 105(15), 151908 (2014).
    [Crossref]
  18. Y. Lin, T. Zhai, and X. Zhang, “Nanoscale heat transfer in direct nanopatterning into gold films by a nanosecond laser pulse,” Opt. Express 22(7), 8396–8404 (2014).
    [Crossref] [PubMed]
  19. W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, “Influence of substrate conductivity on circulation reversal in evaporating drops,” Phys. Rev. Lett. 99(23), 234502 (2007).
    [Crossref] [PubMed]
  20. T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, and Y. Shigesato, “Thermal transport properties of polycrystalline tin-doped indium oxide films,” J. Appl. Phys. 105(7), 073709 (2009).
    [Crossref]
  21. F. Ruffino, E. Carria, S. Kimiagar, I. Crupi, F. Simone, and M. Grimaldi, “Formation and evolution of nanoscale metal structures on ITO surface by nanosecond laser irradiations of thin Au and Ag films,” Sci. Adv. Mater. 4(7), 708–718 (2012).
    [Crossref]
  22. X. Zhang, S. Feng, J. Zhang, T. Zhai, H. Liu, and Z. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
    [Crossref]
  23. X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
    [Crossref]
  24. Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, Ho. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
  25. S. Feng, X. Zhang, J. Song, H. Liu, and Y. Song, “Theoretical analysis on the tuning dynamics of the waveguide-grating structures,” Opt. Express 17(2), 426–436 (2009).
    [Crossref] [PubMed]

2014 (3)

T. Zhai, Y. Wang, F. Liu, Z. Xu, S. Feng, H. Liu, and X. Zhang, “Controllable plasmonic transfer through laser-induced nanostructuring,” Appl. Phys. Express 7(6), 065201 (2014).
[Crossref]

T. Zhai, Y. Wang, Z. Xu, H. Liu, and X. Zhang, “Direct writing of flexible bimetallic nanoparticles for hybrid plasmon response,” Appl. Phys. Lett. 105(15), 151908 (2014).
[Crossref]

Y. Lin, T. Zhai, and X. Zhang, “Nanoscale heat transfer in direct nanopatterning into gold films by a nanosecond laser pulse,” Opt. Express 22(7), 8396–8404 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (2)

F. Ruffino, E. Carria, S. Kimiagar, I. Crupi, F. Simone, and M. Grimaldi, “Formation and evolution of nanoscale metal structures on ITO surface by nanosecond laser irradiations of thin Au and Ag films,” Sci. Adv. Mater. 4(7), 708–718 (2012).
[Crossref]

X. Zhang, S. Feng, J. Zhang, T. Zhai, H. Liu, and Z. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

2011 (2)

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (4)

S. Feng, X. Zhang, J. Song, H. Liu, and Y. Song, “Theoretical analysis on the tuning dynamics of the waveguide-grating structures,” Opt. Express 17(2), 426–436 (2009).
[Crossref] [PubMed]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
[Crossref] [PubMed]

S. Buzzi, M. Galli, M. Agio, and J. F. Löffler, “Silver high-aspect-ratio micro-and nanoimprinting for optical applications,” Appl. Phys. Lett. 94(22), 223115 (2009).
[Crossref]

T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, and Y. Shigesato, “Thermal transport properties of polycrystalline tin-doped indium oxide films,” J. Appl. Phys. 105(7), 073709 (2009).
[Crossref]

2007 (1)

W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, “Influence of substrate conductivity on circulation reversal in evaporating drops,” Phys. Rev. Lett. 99(23), 234502 (2007).
[Crossref] [PubMed]

2006 (1)

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

2005 (3)

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

V. Malyarchuk, F. Hua, N. H. Mack, V. T. Velasquez, J. O. White, R. G. Nuzzo, and J. A. Rogers, “High performance plasmonic crystal sensor formed by soft nanoimprint lithography,” Opt. Express 13(15), 5669–5675 (2005).
[Crossref] [PubMed]

A. Benabbas, V. Halté, and J.-Y. Bigot, “Analytical model of the optical response of periodically structured metallic films,” Opt. Express 13(22), 8730–8745 (2005).
[Crossref] [PubMed]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Agio, M.

S. Buzzi, M. Galli, M. Agio, and J. F. Löffler, “Silver high-aspect-ratio micro-and nanoimprinting for optical applications,” Appl. Phys. Lett. 94(22), 223115 (2009).
[Crossref]

Arnedillo, M. L.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Ashida, T.

T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, and Y. Shigesato, “Thermal transport properties of polycrystalline tin-doped indium oxide films,” J. Appl. Phys. 105(7), 073709 (2009).
[Crossref]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Baba, T.

T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, and Y. Shigesato, “Thermal transport properties of polycrystalline tin-doped indium oxide films,” J. Appl. Phys. 105(7), 073709 (2009).
[Crossref]

Benabbas, A.

Bigot, J.-Y.

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Buzzi, S.

S. Buzzi, M. Galli, M. Agio, and J. F. Löffler, “Silver high-aspect-ratio micro-and nanoimprinting for optical applications,” Appl. Phys. Lett. 94(22), 223115 (2009).
[Crossref]

Carria, E.

F. Ruffino, E. Carria, S. Kimiagar, I. Crupi, F. Simone, and M. Grimaldi, “Formation and evolution of nanoscale metal structures on ITO surface by nanosecond laser irradiations of thin Au and Ag films,” Sci. Adv. Mater. 4(7), 708–718 (2012).
[Crossref]

Chadha, A. S.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, Ho. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).

Chichkov, B. N.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
[Crossref] [PubMed]

Crupi, I.

F. Ruffino, E. Carria, S. Kimiagar, I. Crupi, F. Simone, and M. Grimaldi, “Formation and evolution of nanoscale metal structures on ITO surface by nanosecond laser irradiations of thin Au and Ag films,” Sci. Adv. Mater. 4(7), 708–718 (2012).
[Crossref]

Domingues, C.

W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, “Influence of substrate conductivity on circulation reversal in evaporating drops,” Phys. Rev. Lett. 99(23), 234502 (2007).
[Crossref] [PubMed]

Dou, F.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

Elezzabi, A. Y.

Evlyukhin, A. B.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Fan, S.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, Ho. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).

Feng, S.

T. Zhai, Y. Wang, F. Liu, Z. Xu, S. Feng, H. Liu, and X. Zhang, “Controllable plasmonic transfer through laser-induced nanostructuring,” Appl. Phys. Express 7(6), 065201 (2014).
[Crossref]

T. Zhai, Y. Lin, H. Liu, S. Feng, and X. Zhang, “Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures,” Opt. Express 21(21), 24490–24496 (2013).
[Crossref] [PubMed]

X. Zhang, S. Feng, J. Zhang, T. Zhai, H. Liu, and Z. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

S. Feng, X. Zhang, J. Song, H. Liu, and Y. Song, “Theoretical analysis on the tuning dynamics of the waveguide-grating structures,” Opt. Express 17(2), 426–436 (2009).
[Crossref] [PubMed]

Friend, R. H.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Galli, M.

S. Buzzi, M. Galli, M. Agio, and J. F. Löffler, “Silver high-aspect-ratio micro-and nanoimprinting for optical applications,” Appl. Phys. Lett. 94(22), 223115 (2009).
[Crossref]

Giessen, H.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Gonçalves, M. R.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Gray, S. K.

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22(10), 1102–1110 (2010).
[Crossref] [PubMed]

Grimaldi, M.

F. Ruffino, E. Carria, S. Kimiagar, I. Crupi, F. Simone, and M. Grimaldi, “Formation and evolution of nanoscale metal structures on ITO surface by nanosecond laser irradiations of thin Au and Ag films,” Sci. Adv. Mater. 4(7), 708–718 (2012).
[Crossref]

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Guo, H.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Halté, V.

Han, W.

Han, Z.

Hicks, E. M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Hua, F.

Jiang, X.

Käll, M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Kasemo, B.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Kim, P. G.

W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, “Influence of substrate conductivity on circulation reversal in evaporating drops,” Phys. Rev. Lett. 99(23), 234502 (2007).
[Crossref] [PubMed]

Kimiagar, S.

F. Ruffino, E. Carria, S. Kimiagar, I. Crupi, F. Simone, and M. Grimaldi, “Formation and evolution of nanoscale metal structures on ITO surface by nanosecond laser irradiations of thin Au and Ag films,” Sci. Adv. Mater. 4(7), 708–718 (2012).
[Crossref]

Kiyan, R.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Koch, J.

Koroleva, A.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Kuznetsov, A. I.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
[Crossref] [PubMed]

Le, A. P.

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22(10), 1102–1110 (2010).
[Crossref] [PubMed]

Li, Y.

Lin, Y.

Liu, F.

T. Zhai, Y. Wang, F. Liu, Z. Xu, S. Feng, H. Liu, and X. Zhang, “Controllable plasmonic transfer through laser-induced nanostructuring,” Appl. Phys. Express 7(6), 065201 (2014).
[Crossref]

Liu, H.

T. Zhai, Y. Wang, F. Liu, Z. Xu, S. Feng, H. Liu, and X. Zhang, “Controllable plasmonic transfer through laser-induced nanostructuring,” Appl. Phys. Express 7(6), 065201 (2014).
[Crossref]

T. Zhai, Y. Wang, Z. Xu, H. Liu, and X. Zhang, “Direct writing of flexible bimetallic nanoparticles for hybrid plasmon response,” Appl. Phys. Lett. 105(15), 151908 (2014).
[Crossref]

Y. Lin, T. Zhai, Q. Ma, H. Liu, and X. Zhang, “Compact bandwidth-tunable polarization filter based on a plasmonic heterograting,” Opt. Express 21(9), 11315–11321 (2013).
[Crossref] [PubMed]

T. Zhai, Y. Lin, H. Liu, S. Feng, and X. Zhang, “Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures,” Opt. Express 21(21), 24490–24496 (2013).
[Crossref] [PubMed]

T. Zhai, Y. Lin, H. Liu, and X. Zhang, “Solution-processable complex plasmonic quasicrystals,” Opt. Express 21(23), 28444–28449 (2013).
[Crossref] [PubMed]

X. Zhang, S. Feng, J. Zhang, T. Zhai, H. Liu, and Z. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

S. Feng, X. Zhang, J. Song, H. Liu, and Y. Song, “Theoretical analysis on the tuning dynamics of the waveguide-grating structures,” Opt. Express 17(2), 426–436 (2009).
[Crossref] [PubMed]

Löffler, J. F.

S. Buzzi, M. Galli, M. Agio, and J. F. Löffler, “Silver high-aspect-ratio micro-and nanoimprinting for optical applications,” Appl. Phys. Lett. 94(22), 223115 (2009).
[Crossref]

Ma, Q.

Ma, X.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

Ma, Z.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, Ho. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).

Mack, N. H.

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Malyarchuk, V.

Marti, O.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Ming, N.

Miyamura, A.

T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, and Y. Shigesato, “Thermal transport properties of polycrystalline tin-doped indium oxide films,” J. Appl. Phys. 105(7), 073709 (2009).
[Crossref]

Moore, J. S.

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22(10), 1102–1110 (2010).
[Crossref] [PubMed]

Nau, D.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Nuzzo, R. G.

Oka, N.

T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, and Y. Shigesato, “Thermal transport properties of polycrystalline tin-doped indium oxide films,” J. Appl. Phys. 105(7), 073709 (2009).
[Crossref]

Pan, J.

Pang, Z.

X. Zhang, S. Feng, J. Zhang, T. Zhai, H. Liu, and Z. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Reinhardt, C.

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Requicha, A. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Ristenpart, W. D.

W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, “Influence of substrate conductivity on circulation reversal in evaporating drops,” Phys. Rev. Lett. 99(23), 234502 (2007).
[Crossref] [PubMed]

Rogers, J. A.

Ruffino, F.

F. Ruffino, E. Carria, S. Kimiagar, I. Crupi, F. Simone, and M. Grimaldi, “Formation and evolution of nanoscale metal structures on ITO surface by nanosecond laser irradiations of thin Au and Ag films,” Sci. Adv. Mater. 4(7), 708–718 (2012).
[Crossref]

Sato, Y.

T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, and Y. Shigesato, “Thermal transport properties of polycrystalline tin-doped indium oxide films,” J. Appl. Phys. 105(7), 073709 (2009).
[Crossref]

Schatz, G. C.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Seo, J.-H.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, Ho. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).

Shigesato, Y.

T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, and Y. Shigesato, “Thermal transport properties of polycrystalline tin-doped indium oxide films,” J. Appl. Phys. 105(7), 073709 (2009).
[Crossref]

Shuai, Y.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, Ho. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).

Simone, F.

F. Ruffino, E. Carria, S. Kimiagar, I. Crupi, F. Simone, and M. Grimaldi, “Formation and evolution of nanoscale metal structures on ITO surface by nanosecond laser irradiations of thin Au and Ag films,” Sci. Adv. Mater. 4(7), 708–718 (2012).
[Crossref]

Song, J.

Song, Y.

Spears, K. G.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Stone, H. A.

W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, “Influence of substrate conductivity on circulation reversal in evaporating drops,” Phys. Rev. Lett. 99(23), 234502 (2007).
[Crossref] [PubMed]

Sun, B.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Taketoshi, N.

T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, and Y. Shigesato, “Thermal transport properties of polycrystalline tin-doped indium oxide films,” J. Appl. Phys. 105(7), 073709 (2009).
[Crossref]

Van, V.

Van Duyne, R. P.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Velasquez, V. T.

Wan, J.

W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, “Influence of substrate conductivity on circulation reversal in evaporating drops,” Phys. Rev. Lett. 99(23), 234502 (2007).
[Crossref] [PubMed]

Wang, Y.

T. Zhai, Y. Wang, Z. Xu, H. Liu, and X. Zhang, “Direct writing of flexible bimetallic nanoparticles for hybrid plasmon response,” Appl. Phys. Lett. 105(15), 151908 (2014).
[Crossref]

T. Zhai, Y. Wang, F. Liu, Z. Xu, S. Feng, H. Liu, and X. Zhang, “Controllable plasmonic transfer through laser-induced nanostructuring,” Appl. Phys. Express 7(6), 065201 (2014).
[Crossref]

Wang, Z.

White, J. O.

Xu, Z.

T. Zhai, Y. Wang, Z. Xu, H. Liu, and X. Zhang, “Direct writing of flexible bimetallic nanoparticles for hybrid plasmon response,” Appl. Phys. Lett. 105(15), 151908 (2014).
[Crossref]

T. Zhai, Y. Wang, F. Liu, Z. Xu, S. Feng, H. Liu, and X. Zhang, “Controllable plasmonic transfer through laser-induced nanostructuring,” Appl. Phys. Express 7(6), 065201 (2014).
[Crossref]

Yagi, T.

T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, and Y. Shigesato, “Thermal transport properties of polycrystalline tin-doped indium oxide films,” J. Appl. Phys. 105(7), 073709 (2009).
[Crossref]

Yang, Ho.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, Ho. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).

Yao, J.

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22(10), 1102–1110 (2010).
[Crossref] [PubMed]

Zhai, T.

T. Zhai, Y. Wang, F. Liu, Z. Xu, S. Feng, H. Liu, and X. Zhang, “Controllable plasmonic transfer through laser-induced nanostructuring,” Appl. Phys. Express 7(6), 065201 (2014).
[Crossref]

T. Zhai, Y. Wang, Z. Xu, H. Liu, and X. Zhang, “Direct writing of flexible bimetallic nanoparticles for hybrid plasmon response,” Appl. Phys. Lett. 105(15), 151908 (2014).
[Crossref]

Y. Lin, T. Zhai, and X. Zhang, “Nanoscale heat transfer in direct nanopatterning into gold films by a nanosecond laser pulse,” Opt. Express 22(7), 8396–8404 (2014).
[Crossref] [PubMed]

T. Zhai, Y. Lin, H. Liu, and X. Zhang, “Solution-processable complex plasmonic quasicrystals,” Opt. Express 21(23), 28444–28449 (2013).
[Crossref] [PubMed]

T. Zhai, Y. Lin, H. Liu, S. Feng, and X. Zhang, “Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures,” Opt. Express 21(21), 24490–24496 (2013).
[Crossref] [PubMed]

Y. Lin, T. Zhai, Q. Ma, H. Liu, and X. Zhang, “Compact bandwidth-tunable polarization filter based on a plasmonic heterograting,” Opt. Express 21(9), 11315–11321 (2013).
[Crossref] [PubMed]

X. Zhang, S. Feng, J. Zhang, T. Zhai, H. Liu, and Z. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

Zhan, P.

Zhang, J.

X. Zhang, S. Feng, J. Zhang, T. Zhai, H. Liu, and Z. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

Zhang, X.

Y. Lin, T. Zhai, and X. Zhang, “Nanoscale heat transfer in direct nanopatterning into gold films by a nanosecond laser pulse,” Opt. Express 22(7), 8396–8404 (2014).
[Crossref] [PubMed]

T. Zhai, Y. Wang, F. Liu, Z. Xu, S. Feng, H. Liu, and X. Zhang, “Controllable plasmonic transfer through laser-induced nanostructuring,” Appl. Phys. Express 7(6), 065201 (2014).
[Crossref]

T. Zhai, Y. Wang, Z. Xu, H. Liu, and X. Zhang, “Direct writing of flexible bimetallic nanoparticles for hybrid plasmon response,” Appl. Phys. Lett. 105(15), 151908 (2014).
[Crossref]

T. Zhai, Y. Lin, H. Liu, and X. Zhang, “Solution-processable complex plasmonic quasicrystals,” Opt. Express 21(23), 28444–28449 (2013).
[Crossref] [PubMed]

T. Zhai, Y. Lin, H. Liu, S. Feng, and X. Zhang, “Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures,” Opt. Express 21(21), 24490–24496 (2013).
[Crossref] [PubMed]

Y. Lin, T. Zhai, Q. Ma, H. Liu, and X. Zhang, “Compact bandwidth-tunable polarization filter based on a plasmonic heterograting,” Opt. Express 21(9), 11315–11321 (2013).
[Crossref] [PubMed]

X. Zhang, S. Feng, J. Zhang, T. Zhai, H. Liu, and Z. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

S. Feng, X. Zhang, J. Song, H. Liu, and Y. Song, “Theoretical analysis on the tuning dynamics of the waveguide-grating structures,” Opt. Express 17(2), 426–436 (2009).
[Crossref] [PubMed]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Zhao, D.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, Ho. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).

Zhao, P.

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

Zhou, W.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, Ho. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).

Zhu, S.

Zi, J.

Zou, S.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

ACS Nano (1)

A. I. Kuznetsov, A. B. Evlyukhin, M. R. Gonçalves, C. Reinhardt, A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano 5(6), 4843–4849 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

Adv. Mater. (2)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001).
[Crossref]

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22(10), 1102–1110 (2010).
[Crossref] [PubMed]

Appl. Phys. Express (1)

T. Zhai, Y. Wang, F. Liu, Z. Xu, S. Feng, H. Liu, and X. Zhang, “Controllable plasmonic transfer through laser-induced nanostructuring,” Appl. Phys. Express 7(6), 065201 (2014).
[Crossref]

Appl. Phys. Lett. (3)

T. Zhai, Y. Wang, Z. Xu, H. Liu, and X. Zhang, “Direct writing of flexible bimetallic nanoparticles for hybrid plasmon response,” Appl. Phys. Lett. 105(15), 151908 (2014).
[Crossref]

S. Buzzi, M. Galli, M. Agio, and J. F. Löffler, “Silver high-aspect-ratio micro-and nanoimprinting for optical applications,” Appl. Phys. Lett. 94(22), 223115 (2009).
[Crossref]

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, Ho. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).

J. Appl. Phys. (1)

T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, and Y. Shigesato, “Thermal transport properties of polycrystalline tin-doped indium oxide films,” J. Appl. Phys. 105(7), 073709 (2009).
[Crossref]

Nano Lett. (2)

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Opt. Express (9)

Y. Li, J. Pan, P. Zhan, S. Zhu, N. Ming, Z. Wang, W. Han, X. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref] [PubMed]

A. Benabbas, V. Halté, and J.-Y. Bigot, “Analytical model of the optical response of periodically structured metallic films,” Opt. Express 13(22), 8730–8745 (2005).
[Crossref] [PubMed]

Y. Lin, T. Zhai, Q. Ma, H. Liu, and X. Zhang, “Compact bandwidth-tunable polarization filter based on a plasmonic heterograting,” Opt. Express 21(9), 11315–11321 (2013).
[Crossref] [PubMed]

T. Zhai, Y. Lin, H. Liu, and X. Zhang, “Solution-processable complex plasmonic quasicrystals,” Opt. Express 21(23), 28444–28449 (2013).
[Crossref] [PubMed]

V. Malyarchuk, F. Hua, N. H. Mack, V. T. Velasquez, J. O. White, R. G. Nuzzo, and J. A. Rogers, “High performance plasmonic crystal sensor formed by soft nanoimprint lithography,” Opt. Express 13(15), 5669–5675 (2005).
[Crossref] [PubMed]

T. Zhai, Y. Lin, H. Liu, S. Feng, and X. Zhang, “Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures,” Opt. Express 21(21), 24490–24496 (2013).
[Crossref] [PubMed]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
[Crossref] [PubMed]

Y. Lin, T. Zhai, and X. Zhang, “Nanoscale heat transfer in direct nanopatterning into gold films by a nanosecond laser pulse,” Opt. Express 22(7), 8396–8404 (2014).
[Crossref] [PubMed]

S. Feng, X. Zhang, J. Song, H. Liu, and Y. Song, “Theoretical analysis on the tuning dynamics of the waveguide-grating structures,” Opt. Express 17(2), 426–436 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, “Influence of substrate conductivity on circulation reversal in evaporating drops,” Phys. Rev. Lett. 99(23), 234502 (2007).
[Crossref] [PubMed]

Sci. Adv. Mater. (1)

F. Ruffino, E. Carria, S. Kimiagar, I. Crupi, F. Simone, and M. Grimaldi, “Formation and evolution of nanoscale metal structures on ITO surface by nanosecond laser irradiations of thin Au and Ag films,” Sci. Adv. Mater. 4(7), 708–718 (2012).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Sensors (Basel Switzerland) (1)

X. Zhang, S. Feng, J. Zhang, T. Zhai, H. Liu, and Z. Pang, “Sensors based on plasmonic-photonic coupling in metallic photonic crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the fabrication procedure for the complementary metallic nanostructure pairs. (a) PDMS substrate coated with a thin gold film. (b) The gold-coated glass substrate is covered by a soft elastic slab of 1 mm in thickness. The sample was exposed to a two-beam interference pattern with an included angle α, which forms periodic metallic nanostructures. The inset is the photograph of the PDMS pairs in Fig. 1(b). ① and ② identify the receiver and donor, respectively. (c) The periodic metallic nanostructure forms within the bright fringes of the interference pattern and is transferred to the soft slab. The complimentary periodic nanostructure within the dark fringes remains on the PDMS substrate.
Fig. 2
Fig. 2 SEM images of gold gratings with different duty ratios: (a) 0.5 and (b) 0.66 fabricated at laser fluences of (a) 478 mJ/cm2 and (b) 318 mJ/cm2. The bright regions/dots denoted by blue/red arrows are gold films/nanodroplets. The period of the gratings is 900 nm. The substrate is ITO-coated glass.
Fig. 3
Fig. 3 SEM images of complementary nanostructure pairs on soft PDMS. 1D nanostructures on the (a) receiver and (d) donor substrates. 2D nanostructures on the (b) receiver and (e) donor substrates. Optical images of the (c) receiver and (f) donor substrates upon bending. Different diffraction colours of the nanostructures indicate the elastic deformation of soft PDMS under stress. Several patterns are fabricated on one soft substrate in (c) and (f). The bright regions in (a), (b), (d), (e) are gold. The laser fluence was 450 mJ/cm2.
Fig. 4
Fig. 4 SEM images of complementary nanostructure pairs on ITO glass fabricated by laser-induced transfer. (a), (b), (d) and (e) 1D nanostructures with different duty ratios. (c) and (f) 2D nanostructures. The upper panels show the receivers. The lower panels denote the corresponding donors. The bright regions are gold. The laser fluence was 200 mJ/cm2 for (a) and 450 mJ/cm2 for (b).
Fig. 5
Fig. 5 SEM images of metallic nanoparticles on (a) an ITO-coated glass and (b) a PDMS slab. (c) A typical size distribution of the nanoparticles generated by laser-induced nanostructuring. Histograms (blue boxes) of the mean diameter distribution of the SEM image in Fig. 4(b) are Gaussian fitted (red curves). The inset shows the atomic force microscopic image of the nanostructure. Scale bar, 600 nm. (d) Extinction spectra of gold nanoparticles on PDMS substrates before and after 5-min ultrasonic cleaning experiment. The inset denotes optical image of the sample after 5-min ultrasonic cleaning.
Fig. 6
Fig. 6 Angle-resolved tuning properties of the Fano dips for (a) TE and (b) TM polarizations. The period of the gratings is 400 nm.

Metrics