Abstract

Doped-ion based optical elements play key roles in optical signal processes, including amplification, absorption, wavelength-filtering, lighting, and polarizing plate. Non-invasively mapping the spatial distribution of the ion concentrations in these optical elements is highly desirable either during the fabrication process or to determine their optical qualities. In this work, we applied modified two-photon fluorescence (m-TPF) microscopy to trace the ion-distributions deep inside the optical elements. For demonstration purposes, polyvinyl alcohol (PVA) polymer films inside polarizing plates are taken as an example, where the spatial distributions of Iodine-dyed ions were measured by the m-TPF microscope in a fast and non-invasive way. The durability of the polarizer films can be distinguished from the axial distribution of the Iodine-dyed ions, without the need to perform a biopsy. This proposed method and demonstrated results show great potential for monitoring the spatial distributions of doped-ions in the optical elements quickly and non-destructively, which would be of great benefit in both scientific research and industrial applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization distortion effects in polarimetric two-photon microscopy

Peter Schön, Fabiana Munhoz, Alicja Gasecka, Sophie Brustlein, and Sophie Brasselet
Opt. Express 16(25) 20891-20901 (2008)

Simultaneous imaging of two-photon absorption and stimulated Raman scattering by spatial overlap modulation nonlinear optical microscopy

Keisuke Isobe, Hiroyuki Kawano, Akira Suda, Akiko Kumagai, Atsushi Miyawaki, and Katsumi Midorikawa
Biomed. Opt. Express 4(9) 1548-1558 (2013)

Two-photon excitation STED microscopy

Gael Moneron and Stefan W. Hell
Opt. Express 17(17) 14567-14573 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. T. Verdeyen, Laser Electronics (Prentice Hall, 1995).
  2. B. Zhou, D. Yang, H. Lin, and E. Y.-B. Pun, “Emissions of 1.20 and 1.38 μm from Ho3+-doped lithium–barium–bismuth–lead oxide glass for optical amplifications,” J. Non-Cryst. Solids 357(11-13), 2468–2471 (2011).
    [Crossref]
  3. P. C. D. Hobbs, Building Electro-Optical Systems Making It All Work (John Wiley & Sons, 2000).
  4. J. A. Dobrowolski, G. E. Marsh, D. G. Charbonneau, J. Eng, and P. D. Josephy, “Colored filter glasses: an intercomparison of glasses made by different manufacturers,” Appl. Opt. 16(6), 1491–1512 (1977).
    [Crossref] [PubMed]
  5. L. Wang, J. S. Swensen, E. Polikarpov, D. W. Matson, C. C. Bonham, W. Bennett, D. J. Gaspar, and A. B. Padmaperuma, “Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates,” Org. Electron. 11(9), 1555–1560 (2010).
    [Crossref]
  6. M. Seto, Y. Maeda, T. Matsuyama, H. Yamaoka, and H. Sakai, “Light Polarization in Iodine Doped Polyvinyl-Alcohol Films,” Hyperfine Interact. 8, 221–224 (1991).
  7. E. H. Land, Light polarizer and process of manufacture, US Patent, 2328219, 1943.
  8. V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLuW and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
    [Crossref]
  9. S. Ricaud, A. Jaffres, K. Wentsch, A. Suganuma, B. Viana, P. Loiseau, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, C. Hönninger, E. Mottay, P. Georges, and F. Druon, “Femtosecond Yb:CaGdAlO4 thin-disk oscillator,” Opt. Lett. 37(19), 3984–3986 (2012).
    [Crossref] [PubMed]
  10. M. S. Selima and A. Sawaby, “Optical studies on treated polyvinyl-iodine films and some applications,” Polym-Plasti. Technol. 40, 133–143 (2001).
  11. E. J. Shin, W. S. Lyoo, and Y. H. Lee, “Polarizer effect and structure of Iodinated before and after casting polyvinyl alcohol film,” J. Appl. Polym. Sci. 120(1), 397–405 (2011).
    [Crossref]
  12. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  13. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
    [Crossref] [PubMed]
  14. B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (John Wiley & Sons, 1991)
  15. P. N. Prasad, Introduction to Biophotonics (John Wiley & Sons, 2003).
  16. S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, and C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express 12(25), 6122–6128 (2004).
    [Crossref] [PubMed]
  17. H. W. Chen, T. Sosnowski, C.-H. Liu, L.-J. Chen, J. R. Birge, A. Galvanauskas, F. X. Kärtner, and G. Chang, “Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor,” Opt. Express 18(24), 24699–24705 (2010).
    [Crossref] [PubMed]

2012 (1)

2011 (2)

E. J. Shin, W. S. Lyoo, and Y. H. Lee, “Polarizer effect and structure of Iodinated before and after casting polyvinyl alcohol film,” J. Appl. Polym. Sci. 120(1), 397–405 (2011).
[Crossref]

B. Zhou, D. Yang, H. Lin, and E. Y.-B. Pun, “Emissions of 1.20 and 1.38 μm from Ho3+-doped lithium–barium–bismuth–lead oxide glass for optical amplifications,” J. Non-Cryst. Solids 357(11-13), 2468–2471 (2011).
[Crossref]

2010 (2)

L. Wang, J. S. Swensen, E. Polikarpov, D. W. Matson, C. C. Bonham, W. Bennett, D. J. Gaspar, and A. B. Padmaperuma, “Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates,” Org. Electron. 11(9), 1555–1560 (2010).
[Crossref]

H. W. Chen, T. Sosnowski, C.-H. Liu, L.-J. Chen, J. R. Birge, A. Galvanauskas, F. X. Kärtner, and G. Chang, “Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor,” Opt. Express 18(24), 24699–24705 (2010).
[Crossref] [PubMed]

2007 (1)

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLuW and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

2004 (1)

2001 (1)

M. S. Selima and A. Sawaby, “Optical studies on treated polyvinyl-iodine films and some applications,” Polym-Plasti. Technol. 40, 133–143 (2001).

1999 (1)

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

1991 (1)

M. Seto, Y. Maeda, T. Matsuyama, H. Yamaoka, and H. Sakai, “Light Polarization in Iodine Doped Polyvinyl-Alcohol Films,” Hyperfine Interact. 8, 221–224 (1991).

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1977 (1)

Abdou-Ahmed, M.

Aguiló, M.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLuW and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Bavister, B. D.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Bennett, W.

L. Wang, J. S. Swensen, E. Polikarpov, D. W. Matson, C. C. Bonham, W. Bennett, D. J. Gaspar, and A. B. Padmaperuma, “Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates,” Org. Electron. 11(9), 1555–1560 (2010).
[Crossref]

Birge, J. R.

Bonham, C. C.

L. Wang, J. S. Swensen, E. Polikarpov, D. W. Matson, C. C. Bonham, W. Bennett, D. J. Gaspar, and A. B. Padmaperuma, “Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates,” Org. Electron. 11(9), 1555–1560 (2010).
[Crossref]

Chan, M. C.

Chang, G.

Charbonneau, D. G.

Chen, H. W.

Chen, L. J.

Chen, L.-J.

Cinta Pujol, M.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLuW and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Díaz, F.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLuW and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Dobrowolski, J. A.

Druon, F.

Eng, J.

Galvanauskas, A.

Gaspar, D. J.

L. Wang, J. S. Swensen, E. Polikarpov, D. W. Matson, C. C. Bonham, W. Bennett, D. J. Gaspar, and A. B. Padmaperuma, “Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates,” Org. Electron. 11(9), 1555–1560 (2010).
[Crossref]

Georges, P.

Graf, T.

Griebner, U.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLuW and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Guol, S. H.

Hönninger, C.

Jaffres, A.

Josephy, P. D.

Kärtner, F. X.

Lee, Y. H.

E. J. Shin, W. S. Lyoo, and Y. H. Lee, “Polarizer effect and structure of Iodinated before and after casting polyvinyl alcohol film,” J. Appl. Polym. Sci. 120(1), 397–405 (2011).
[Crossref]

Lin, H.

B. Zhou, D. Yang, H. Lin, and E. Y.-B. Pun, “Emissions of 1.20 and 1.38 μm from Ho3+-doped lithium–barium–bismuth–lead oxide glass for optical amplifications,” J. Non-Cryst. Solids 357(11-13), 2468–2471 (2011).
[Crossref]

Liu, C.-H.

Liu, J. H.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLuW and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Loiseau, P.

Lyoo, W. S.

E. J. Shin, W. S. Lyoo, and Y. H. Lee, “Polarizer effect and structure of Iodinated before and after casting polyvinyl alcohol film,” J. Appl. Polym. Sci. 120(1), 397–405 (2011).
[Crossref]

Maeda, Y.

M. Seto, Y. Maeda, T. Matsuyama, H. Yamaoka, and H. Sakai, “Light Polarization in Iodine Doped Polyvinyl-Alcohol Films,” Hyperfine Interact. 8, 221–224 (1991).

Marsh, G. E.

Mateos, X.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLuW and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Matson, D. W.

L. Wang, J. S. Swensen, E. Polikarpov, D. W. Matson, C. C. Bonham, W. Bennett, D. J. Gaspar, and A. B. Padmaperuma, “Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates,” Org. Electron. 11(9), 1555–1560 (2010).
[Crossref]

Matsuyama, T.

M. Seto, Y. Maeda, T. Matsuyama, H. Yamaoka, and H. Sakai, “Light Polarization in Iodine Doped Polyvinyl-Alcohol Films,” Hyperfine Interact. 8, 221–224 (1991).

Mottay, E.

Padmaperuma, A. B.

L. Wang, J. S. Swensen, E. Polikarpov, D. W. Matson, C. C. Bonham, W. Bennett, D. J. Gaspar, and A. B. Padmaperuma, “Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates,” Org. Electron. 11(9), 1555–1560 (2010).
[Crossref]

Petrov, V.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLuW and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Polikarpov, E.

L. Wang, J. S. Swensen, E. Polikarpov, D. W. Matson, C. C. Bonham, W. Bennett, D. J. Gaspar, and A. B. Padmaperuma, “Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates,” Org. Electron. 11(9), 1555–1560 (2010).
[Crossref]

Pun, E. Y.-B.

B. Zhou, D. Yang, H. Lin, and E. Y.-B. Pun, “Emissions of 1.20 and 1.38 μm from Ho3+-doped lithium–barium–bismuth–lead oxide glass for optical amplifications,” J. Non-Cryst. Solids 357(11-13), 2468–2471 (2011).
[Crossref]

Ricaud, S.

Rivier, S.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLuW and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Rytz, D.

Sakai, H.

M. Seto, Y. Maeda, T. Matsuyama, H. Yamaoka, and H. Sakai, “Light Polarization in Iodine Doped Polyvinyl-Alcohol Films,” Hyperfine Interact. 8, 221–224 (1991).

Sawaby, A.

M. S. Selima and A. Sawaby, “Optical studies on treated polyvinyl-iodine films and some applications,” Polym-Plasti. Technol. 40, 133–143 (2001).

Selima, M. S.

M. S. Selima and A. Sawaby, “Optical studies on treated polyvinyl-iodine films and some applications,” Polym-Plasti. Technol. 40, 133–143 (2001).

Seto, M.

M. Seto, Y. Maeda, T. Matsuyama, H. Yamaoka, and H. Sakai, “Light Polarization in Iodine Doped Polyvinyl-Alcohol Films,” Hyperfine Interact. 8, 221–224 (1991).

Shin, E. J.

E. J. Shin, W. S. Lyoo, and Y. H. Lee, “Polarizer effect and structure of Iodinated before and after casting polyvinyl alcohol film,” J. Appl. Polym. Sci. 120(1), 397–405 (2011).
[Crossref]

Silvestre, Ò.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLuW and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Solé, R. M.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLuW and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Sosnowski, T.

Squirrell, J. M.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Suganuma, A.

Sun, C.-K.

Swensen, J. S.

L. Wang, J. S. Swensen, E. Polikarpov, D. W. Matson, C. C. Bonham, W. Bennett, D. J. Gaspar, and A. B. Padmaperuma, “Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates,” Org. Electron. 11(9), 1555–1560 (2010).
[Crossref]

Tai, S. P.

Tsai, T. H.

Viana, B.

Voss, A.

Wang, L.

L. Wang, J. S. Swensen, E. Polikarpov, D. W. Matson, C. C. Bonham, W. Bennett, D. J. Gaspar, and A. B. Padmaperuma, “Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates,” Org. Electron. 11(9), 1555–1560 (2010).
[Crossref]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Weichelt, B.

Wentsch, K.

White, J. G.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Wokosin, D. L.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Yamaoka, H.

M. Seto, Y. Maeda, T. Matsuyama, H. Yamaoka, and H. Sakai, “Light Polarization in Iodine Doped Polyvinyl-Alcohol Films,” Hyperfine Interact. 8, 221–224 (1991).

Yang, D.

B. Zhou, D. Yang, H. Lin, and E. Y.-B. Pun, “Emissions of 1.20 and 1.38 μm from Ho3+-doped lithium–barium–bismuth–lead oxide glass for optical amplifications,” J. Non-Cryst. Solids 357(11-13), 2468–2471 (2011).
[Crossref]

Zhou, B.

B. Zhou, D. Yang, H. Lin, and E. Y.-B. Pun, “Emissions of 1.20 and 1.38 μm from Ho3+-doped lithium–barium–bismuth–lead oxide glass for optical amplifications,” J. Non-Cryst. Solids 357(11-13), 2468–2471 (2011).
[Crossref]

Appl. Opt. (1)

Hyperfine Interact. (1)

M. Seto, Y. Maeda, T. Matsuyama, H. Yamaoka, and H. Sakai, “Light Polarization in Iodine Doped Polyvinyl-Alcohol Films,” Hyperfine Interact. 8, 221–224 (1991).

J. Appl. Polym. Sci. (1)

E. J. Shin, W. S. Lyoo, and Y. H. Lee, “Polarizer effect and structure of Iodinated before and after casting polyvinyl alcohol film,” J. Appl. Polym. Sci. 120(1), 397–405 (2011).
[Crossref]

J. Non-Cryst. Solids (1)

B. Zhou, D. Yang, H. Lin, and E. Y.-B. Pun, “Emissions of 1.20 and 1.38 μm from Ho3+-doped lithium–barium–bismuth–lead oxide glass for optical amplifications,” J. Non-Cryst. Solids 357(11-13), 2468–2471 (2011).
[Crossref]

Laser Photon. Rev. (1)

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLuW and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1(2), 179–212 (2007).
[Crossref]

Nat. Biotechnol. (1)

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Org. Electron. (1)

L. Wang, J. S. Swensen, E. Polikarpov, D. W. Matson, C. C. Bonham, W. Bennett, D. J. Gaspar, and A. B. Padmaperuma, “Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates,” Org. Electron. 11(9), 1555–1560 (2010).
[Crossref]

Polym-Plasti. Technol. (1)

M. S. Selima and A. Sawaby, “Optical studies on treated polyvinyl-iodine films and some applications,” Polym-Plasti. Technol. 40, 133–143 (2001).

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (5)

B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (John Wiley & Sons, 1991)

P. N. Prasad, Introduction to Biophotonics (John Wiley & Sons, 2003).

E. H. Land, Light polarizer and process of manufacture, US Patent, 2328219, 1943.

J. T. Verdeyen, Laser Electronics (Prentice Hall, 1995).

P. C. D. Hobbs, Building Electro-Optical Systems Making It All Work (John Wiley & Sons, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Principles of the ion-concentration mapping method. In this experiment, the loss in pumping was monitored to determine the doped-ion concentration. (b) The layered structure of a TN-type polarizer film. From the surface of the polarizer film to the LCD cell, the structure includes a tri-acetyl cellulose (TAC) film with surface treatment, a uniaxial polyvinyl alcohol (PVA) layer, a wide viewing compensation layer (TAC), and a pressure sensitive adhesive (PSA) layer.
Fig. 2
Fig. 2 Measured transmission spectrum of polarizing plate. The 400-800 nm regions are for one-photon absorption of Iodine-dyed layer in the PVA film and the wavelength regions beyond 900nm are suitable for two-photon absorption.
Fig. 3
Fig. 3 (a) Schematics of the TPA microscope for monitoring the spatial distribution of doped ions. Here, Laser: Pump 1030 nm femtosecond laser; ISO: Isolator; L1, L2, and L3: Lens; OBJ1 and OBJ2 are the focusing and collimating objectives; M1 and M2 are Mirrors; CGF: color glass filter; DET: detectors. Please note that the detector was linked to a lock-in amplifier to increase the signal to noise ratio; (b) the axial trace of a normal (well-durable) polarizer and (c) an abnormal (poorly-durable) polarizer. In (b) and (c), the step size was 1 μm.
Fig. 4
Fig. 4 Microscope images of sliced (a) durable and (b) poorly-durable polarizers. (c) The two-photon absorption virtual biopsy image of the test polarizer. Image sizes in these three figures are 100 μm by 100 μm. The PVA layers are vertically located in the center of the three figures with a 25 μm thickness.

Metrics