Abstract

The dynamic process of material ejection and shock wave evolution during one single femtosecond laser pulse ablation of aluminum target in water and air is experimentally investigated by employing pump-probe technique. Shadowgraphs and digital holograms with high temporal resolution are recorded, which intuitively reveal the characteristics of femtosecond laser ablation in the water-confined environment. The experimental result indicates that the liquid significantly restrict the diffusion of the ejected material, and it has a considerable effect on the attenuation of the shock wave. In addition, the expansion Mach wave generated by the ultrasonic expansion of the shock wave is observed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of laser-induced air breakdown on femtosecond laser ablation of aluminum

Hang Zhang, Fangteng Zhang, Xi Du, Guoping Dong, and Jianrong Qiu
Opt. Express 23(2) 1370-1376 (2015)

Laser ablation of silicon in water with nanosecond and femtosecond pulses

Jun Ren, Michael Kelly, and Lambertus Hesselink
Opt. Lett. 30(13) 1740-1742 (2005)

Stoichiometry of laser ablated brass nanoparticles in water and air

D. N. Patel, Pramod K. Pandey, and Raj K. Thareja
Appl. Opt. 52(31) 7592-7601 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89(4), 2400–2403 (2001).
    [Crossref]
  2. J. Ren, M. Kelly, and L. Hesselink, “Laser ablation of silicon in water with nanosecond and femtosecond pulses,” Opt. Lett. 30(13), 1740–1742 (2005).
    [Crossref] [PubMed]
  3. G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
    [Crossref]
  4. G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
    [Crossref]
  5. A. V. Kabashin and M. Meunier, “Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water,” J. Appl. Phys. 94(12), 7941–7943 (2003).
    [Crossref]
  6. M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation of brass in air and liquid media,” J. Appl. Phys. 113(21), 213106 (2013).
    [Crossref]
  7. J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
    [Crossref]
  8. G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, “Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water,” Opt. Express 20(14), 14848–14856 (2012).
    [Crossref] [PubMed]
  9. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-Resolved Shadowgraphs of Material Ejection in Intense Femtosecond Laser Ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
    [Crossref] [PubMed]
  10. T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett. 33(1), 58–60 (2008).
    [Crossref] [PubMed]
  11. H. Hu, X. Wang, and H. Zhai, “High-fluence femtosecond laser ablation of silica glass: effects of laser-induced pressure,” J. Phys. D Appl. Phys. 44(13), 135202 (2011).
    [Crossref]
  12. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100fs to 5ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).
  13. Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109(5), 053113 (2011).
    [Crossref]
  14. X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
    [Crossref]
  15. F. Vidal, T. W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Critical-point phase separation in laser ablation of conductors,” Phys. Rev. Lett. 86(12), 2573–2576 (2001).
    [Crossref] [PubMed]
  16. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).
  17. L. Martí-López, R. Ocaña, J. A. Porro, M. Morales, and J. L. Ocaña, “Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes,” Appl. Opt. 48(19), 3671–3680 (2009).
    [Crossref] [PubMed]
  18. L. I. Sedov, Similarity and dimensional methods in mechanics (MIR, Moscow, 1982).
  19. Z. Márton, P. Heszler, A. Mechler, B. Hopp, Z. Kantor, and Z. Bor, “Time-resolved shock-wave photography above 193-nm excimer laser-ablated graphite surface,” Appl. Phys., A Mater. Sci. Process. 69(S1), S133–S136 (1999).
    [Crossref]
  20. H. Hu, X. Wang, and H. Zhai, “Neutrals ejection in intense femtosecond laser ablation,” Opt. Lett. 36(2), 124–126 (2011).
    [Crossref] [PubMed]

2013 (1)

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation of brass in air and liquid media,” J. Appl. Phys. 113(21), 213106 (2013).
[Crossref]

2012 (1)

2011 (3)

H. Hu, X. Wang, and H. Zhai, “High-fluence femtosecond laser ablation of silica glass: effects of laser-induced pressure,” J. Phys. D Appl. Phys. 44(13), 135202 (2011).
[Crossref]

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109(5), 053113 (2011).
[Crossref]

H. Hu, X. Wang, and H. Zhai, “Neutrals ejection in intense femtosecond laser ablation,” Opt. Lett. 36(2), 124–126 (2011).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (2)

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-Resolved Shadowgraphs of Material Ejection in Intense Femtosecond Laser Ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[Crossref]

2005 (4)

J. Ren, M. Kelly, and L. Hesselink, “Laser ablation of silicon in water with nanosecond and femtosecond pulses,” Opt. Lett. 30(13), 1740–1742 (2005).
[Crossref] [PubMed]

J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100fs to 5ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

2004 (1)

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[Crossref]

2003 (1)

A. V. Kabashin and M. Meunier, “Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water,” J. Appl. Phys. 94(12), 7941–7943 (2003).
[Crossref]

2001 (2)

F. Vidal, T. W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Critical-point phase separation in laser ablation of conductors,” Phys. Rev. Lett. 86(12), 2573–2576 (2001).
[Crossref] [PubMed]

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89(4), 2400–2403 (2001).
[Crossref]

1999 (1)

Z. Márton, P. Heszler, A. Mechler, B. Hopp, Z. Kantor, and Z. Bor, “Time-resolved shock-wave photography above 193-nm excimer laser-ablated graphite surface,” Appl. Phys., A Mater. Sci. Process. 69(S1), S133–S136 (1999).
[Crossref]

1974 (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Anisimov, S. I.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Audouard, E.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100fs to 5ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).

Balciunas, T.

Barthélemy, O.

F. Vidal, T. W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Critical-point phase separation in laser ablation of conductors,” Phys. Rev. Lett. 86(12), 2573–2576 (2001).
[Crossref] [PubMed]

Bor, Z.

Z. Márton, P. Heszler, A. Mechler, B. Hopp, Z. Kantor, and Z. Bor, “Time-resolved shock-wave photography above 193-nm excimer laser-ablated graphite surface,” Appl. Phys., A Mater. Sci. Process. 69(S1), S133–S136 (1999).
[Crossref]

Breitling, D.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100fs to 5ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).

Chaker, M.

F. Vidal, T. W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Critical-point phase separation in laser ablation of conductors,” Phys. Rev. Lett. 86(12), 2573–2576 (2001).
[Crossref] [PubMed]

Chen, X. Y.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89(4), 2400–2403 (2001).
[Crossref]

Daminelli, G.

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[Crossref]

Dausinger, F.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100fs to 5ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).

Donnet, C.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100fs to 5ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).

Föhl, C.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100fs to 5ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).

Fryer, B. J.

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation of brass in air and liquid media,” J. Appl. Phys. 113(21), 213106 (2013).
[Crossref]

Fujita, J.

Gagnon, J. E.

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation of brass in air and liquid media,” J. Appl. Phys. 113(21), 213106 (2013).
[Crossref]

Greif, R.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

Hesselink, L.

Heszler, P.

Z. Márton, P. Heszler, A. Mechler, B. Hopp, Z. Kantor, and Z. Bor, “Time-resolved shock-wave photography above 193-nm excimer laser-ablated graphite surface,” Appl. Phys., A Mater. Sci. Process. 69(S1), S133–S136 (1999).
[Crossref]

Hong, M. H.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89(4), 2400–2403 (2001).
[Crossref]

Hopp, B.

Z. Márton, P. Heszler, A. Mechler, B. Hopp, Z. Kantor, and Z. Bor, “Time-resolved shock-wave photography above 193-nm excimer laser-ablated graphite surface,” Appl. Phys., A Mater. Sci. Process. 69(S1), S133–S136 (1999).
[Crossref]

Hu, H.

H. Hu, X. Wang, and H. Zhai, “Neutrals ejection in intense femtosecond laser ablation,” Opt. Lett. 36(2), 124–126 (2011).
[Crossref] [PubMed]

H. Hu, X. Wang, and H. Zhai, “High-fluence femtosecond laser ablation of silica glass: effects of laser-induced pressure,” J. Phys. D Appl. Phys. 44(13), 135202 (2011).
[Crossref]

Johnston, T. W.

F. Vidal, T. W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Critical-point phase separation in laser ablation of conductors,” Phys. Rev. Lett. 86(12), 2573–2576 (2001).
[Crossref] [PubMed]

Kabashin, A. V.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

A. V. Kabashin and M. Meunier, “Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water,” J. Appl. Phys. 94(12), 7941–7943 (2003).
[Crossref]

Kantor, Z.

Z. Márton, P. Heszler, A. Mechler, B. Hopp, Z. Kantor, and Z. Bor, “Time-resolved shock-wave photography above 193-nm excimer laser-ablated graphite surface,” Appl. Phys., A Mater. Sci. Process. 69(S1), S133–S136 (1999).
[Crossref]

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Kautek, W.

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[Crossref]

Kelly, M.

Krüger, J.

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[Crossref]

Laville, S.

F. Vidal, T. W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Critical-point phase separation in laser ablation of conductors,” Phys. Rev. Lett. 86(12), 2573–2576 (2001).
[Crossref] [PubMed]

Le Drogoff, B.

F. Vidal, T. W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Critical-point phase separation in laser ablation of conductors,” Phys. Rev. Lett. 86(12), 2573–2576 (2001).
[Crossref] [PubMed]

Le Harzic, R.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100fs to 5ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).

Lu, Y. F.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89(4), 2400–2403 (2001).
[Crossref]

Mao, X. L.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

Margot, J.

F. Vidal, T. W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Critical-point phase separation in laser ablation of conductors,” Phys. Rev. Lett. 86(12), 2573–2576 (2001).
[Crossref] [PubMed]

Martí-López, L.

Márton, Z.

Z. Márton, P. Heszler, A. Mechler, B. Hopp, Z. Kantor, and Z. Bor, “Time-resolved shock-wave photography above 193-nm excimer laser-ablated graphite surface,” Appl. Phys., A Mater. Sci. Process. 69(S1), S133–S136 (1999).
[Crossref]

Mechler, A.

Z. Márton, P. Heszler, A. Mechler, B. Hopp, Z. Kantor, and Z. Bor, “Time-resolved shock-wave photography above 193-nm excimer laser-ablated graphite surface,” Appl. Phys., A Mater. Sci. Process. 69(S1), S133–S136 (1999).
[Crossref]

Melninkaitis, A.

Meunier, M.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

A. V. Kabashin and M. Meunier, “Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water,” J. Appl. Phys. 94(12), 7941–7943 (2003).
[Crossref]

Miyaji, G.

Miyazaki, K.

Morales, M.

Ocaña, J. L.

Ocaña, R.

Perel’man, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Porro, J. A.

Ren, J.

Russo, R. E.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

Sabsabi, M.

F. Vidal, T. W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Critical-point phase separation in laser ablation of conductors,” Phys. Rev. Lett. 86(12), 2573–2576 (2001).
[Crossref] [PubMed]

Sacher, E.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

Shaheen, M. E.

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation of brass in air and liquid media,” J. Appl. Phys. 113(21), 213106 (2013).
[Crossref]

Sirutkaitis, V.

Sommer, S.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100fs to 5ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).

Sylvestre, J. P.

J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

Tamosauskas, G.

Valette, S.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100fs to 5ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).

Vidal, F.

F. Vidal, T. W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Critical-point phase separation in laser ablation of conductors,” Phys. Rev. Lett. 86(12), 2573–2576 (2001).
[Crossref] [PubMed]

Wang, M.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-Resolved Shadowgraphs of Material Ejection in Intense Femtosecond Laser Ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Wang, X.

H. Hu, X. Wang, and H. Zhai, “Neutrals ejection in intense femtosecond laser ablation,” Opt. Lett. 36(2), 124–126 (2011).
[Crossref] [PubMed]

H. Hu, X. Wang, and H. Zhai, “High-fluence femtosecond laser ablation of silica glass: effects of laser-induced pressure,” J. Phys. D Appl. Phys. 44(13), 135202 (2011).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-Resolved Shadowgraphs of Material Ejection in Intense Femtosecond Laser Ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Weikert, M.

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100fs to 5ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).

Wu, Z.

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109(5), 053113 (2011).
[Crossref]

Yang, G. W.

G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[Crossref]

Yang, J.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-Resolved Shadowgraphs of Material Ejection in Intense Femtosecond Laser Ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Yoshifuji, T.

Zeng, X.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

Zhai, H.

H. Hu, X. Wang, and H. Zhai, “High-fluence femtosecond laser ablation of silica glass: effects of laser-induced pressure,” J. Phys. D Appl. Phys. 44(13), 135202 (2011).
[Crossref]

H. Hu, X. Wang, and H. Zhai, “Neutrals ejection in intense femtosecond laser ablation,” Opt. Lett. 36(2), 124–126 (2011).
[Crossref] [PubMed]

Zhang, K.

Zhang, N.

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109(5), 053113 (2011).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-Resolved Shadowgraphs of Material Ejection in Intense Femtosecond Laser Ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Zhu, S.

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89(4), 2400–2403 (2001).
[Crossref]

Zhu, X.

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109(5), 053113 (2011).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-Resolved Shadowgraphs of Material Ejection in Intense Femtosecond Laser Ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (3)

Z. Márton, P. Heszler, A. Mechler, B. Hopp, Z. Kantor, and Z. Bor, “Time-resolved shock-wave photography above 193-nm excimer laser-ablated graphite surface,” Appl. Phys., A Mater. Sci. Process. 69(S1), S133–S136 (1999).
[Crossref]

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

J. P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

Appl. Surf. Sci. (1)

R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, “Pulse width and energy influence on laser micromachining of metals in a range of 100fs to 5ps,” Appl. Surf. Sci. 249(1-4), 322–331 (2005).

J. Appl. Phys. (4)

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109(5), 053113 (2011).
[Crossref]

S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air,” J. Appl. Phys. 89(4), 2400–2403 (2001).
[Crossref]

A. V. Kabashin and M. Meunier, “Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water,” J. Appl. Phys. 94(12), 7941–7943 (2003).
[Crossref]

M. E. Shaheen, J. E. Gagnon, and B. J. Fryer, “Femtosecond laser ablation of brass in air and liquid media,” J. Appl. Phys. 113(21), 213106 (2013).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. Hu, X. Wang, and H. Zhai, “High-fluence femtosecond laser ablation of silica glass: effects of laser-induced pressure,” J. Phys. D Appl. Phys. 44(13), 135202 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

F. Vidal, T. W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, and M. Sabsabi, “Critical-point phase separation in laser ablation of conductors,” Phys. Rev. Lett. 86(12), 2573–2576 (2001).
[Crossref] [PubMed]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-Resolved Shadowgraphs of Material Ejection in Intense Femtosecond Laser Ablation of Aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007).
[Crossref] [PubMed]

Prog. Mater. Sci. (1)

G. W. Yang, “Laser ablation in liquids: applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[Crossref]

Sov. Phys. JETP (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultra-short laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).

Thin Solid Films (1)

G. Daminelli, J. Krüger, and W. Kautek, “Femtosecond laser interaction with silicon under water confinement,” Thin Solid Films 467(1-2), 334–341 (2004).
[Crossref]

Other (1)

L. I. Sedov, Similarity and dimensional methods in mechanics (MIR, Moscow, 1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental setup. BS: beam splitter; DL: delay lines; O: objective; L: lenses. (b) Schematic of target position. (c) Shadowgraph of laser induced breakdown in water.
Fig. 2
Fig. 2 Shadowgraphs of femtosecond laser ablation of aluminum in water (a) and in air (b). The parameters of the laser pulse in water and in air are the same. The laser fluence on the target surface is estimated to be 1.58 J/cm2.
Fig. 3
Fig. 3 Lattice temperature of aluminum target as a function of depth at 50 ps.
Fig. 4
Fig. 4 Radius of the shock wave front at different time delays for the ablations in air and in water.
Fig. 5
Fig. 5 Phase difference maps of femtosecond laser ablation of aluminum in water (a) and in air (b). The parameters of the laser pulse in water and in air are the same. The laser fluence on the target surface is 1.58 J/cm2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r= ξ 0 ( 2.35E ρ ) 1/5 t 2/5

Metrics