Abstract

In this article, we propose and demonstrate a cascaded interferometers structure based on a dual-pass Mach–Zehnder interferometer (DP-MZI) and a Sagnac interferometer (SI) for simultaneous measurement of strain and lateral stress. The cascaded interferometers configuration consists of a SI structure following with a MZI setup. By inserting a section of polarization-maintaining photonic crystal fiber (PM-PCF) in the sensing loop of the SI structure, an inline interference between the two orthogonal polarization modes of PM-PCF, as well as the interference between the sensing arm and the reference arm of the DP-MZI, i.e., the cascaded interferometers with dual interference, are realized. Theoretical study shows that the reflection spectrum of such cascaded interferometers is consisted of two parts: the big spectrum envelope owing to the SI and the fine interference fringes as a result of the DP-MZI. Experimental results show that the SI achieves the sensitivity of lateral stress and strain 1.28 nm/kPa, 0.78 pm/µε, respectively, while the DP-MZI achieves −0.009 nm/kPa and 5.65 pm/µε, demonstrating the ability for dual parameters measurement with high accuracy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vernier effect of two cascaded in-fiber Mach–Zehnder interferometers based on a spherical-shaped structure

Mingyang Xie, Huaping Gong, Jun Zhang, Chun-Liu Zhao, and Xinyong Dong
Appl. Opt. 58(23) 6204-6210 (2019)

Splicing point tapered fiber Mach-Zehnder interferometer for simultaneous measurement of temperature and salinity in seawater

Tianqi Liu, Jing Wang, Yipeng Liao, Lei Yang, and Shanshan Wang
Opt. Express 27(17) 23905-23918 (2019)

Simultaneous measurement of refractive index, strain, and temperature based on a Mach–Zehnder interferometer with hybrid structure optical fiber

Xuekai Gao, Tigang Ning, Jingjing Zheng, Jing Li, Li Pei, Chuanbiao Zhang, Ling Liu, and Xueqing He
Appl. Opt. 58(30) 8187-8193 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, W. Sun, L. Yuan, G. Brambilla, and G. Farrell, “Photonic crystal fiber half-taper probe based refractometer,” Opt. Lett. 39(7), 2076–2079 (2014).
    [Crossref] [PubMed]
  2. X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
    [Crossref]
  3. J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).
    [Crossref] [PubMed]
  4. J. Ma, W. Jin, H. Xuan, C. Wang, and H. L. Ho, “Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film,” Opt. Lett. 39(16), 4769–4772 (2014).
    [Crossref] [PubMed]
  5. B. Han and J. Ou, “Embedded piezoresistive cement-based stress/strain sensor,” Sensor. Actuat. A-Phys. 138(2), 294–298 (2007).
  6. L. Ren, Z. G. Jia, M. S. C. Ho, T. H. Yi, and H. N. Li, “Application of fiber Bragg grating based strain sensor in pipeline vortex-induced vibration measurement,” Sci. China Ser. E 57(9), 1714–1720 (2014).
    [Crossref]
  7. J. Zheng, P. Yan, Y. Yu, Z. Ou, J. Wang, X. Chen, and C. Du, “Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach–Zehnder interferometer,” Opt. Commun. 297, 7–11 (2013).
    [Crossref]
  8. C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287, 31–34 (2013).
    [Crossref]
  9. D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
    [Crossref] [PubMed]
  10. M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
    [Crossref] [PubMed]
  11. L. Zhang, P. Lu, L. Chen, C. Huang, D. Liu, and S. Jiang, “Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy,” Opt. Lett. 37(13), 2622–2624 (2012).
    [PubMed]
  12. C. R. Liao, D. N. Wang, and Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
    [Crossref] [PubMed]
  13. S. Sulejmani, C. Sonnenfeld, T. Geernaert, G. Luyckx, D. Van Hemelrijck, P. Mergo, W. Urbanczyk, K. Chah, C. Caucheteur, P. Mégret, H. Thienpont, and F. Berghmans, “Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers,” Opt. Express 21(17), 20404–20416 (2013).
    [Crossref] [PubMed]
  14. W. Zhang, Y. Liu, F. Li, and H. Xiao, “Fiber laser hydrophone based on double diaphragms: theory and experiment,” J. Lightwave Technol. 26(10), 1349–1352 (2008).
    [Crossref]
  15. C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Opt. Lett. 31(15), 2260–2262 (2006).
    [Crossref] [PubMed]
  16. H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Opt. Commun. 169(1), 159–165 (1999).
    [Crossref]
  17. Z. C. Luo, A. P. Luo, and W. C. Xu, “Polarization-controlled tunable all-fiber comb filter based on a modified dual-pass Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 21(15), 1066–1068 (2009).
    [Crossref]
  18. H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008).
    [Crossref] [PubMed]
  19. C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marquesd, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem. 188, 1212–1217 (2013).
  20. X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
    [Crossref]
  21. A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).
    [Crossref]
  22. D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
    [Crossref] [PubMed]
  23. L. Mao, P. Lu, Z. Lao, and D. Liu, “Simultaneous Measurement of Curvature and Temperature Based on Mach-Zehnder Interferometer with Lateral Offset and Ultra-abrupt Taper,” Conference on Lasers and Electro-Optics/Pacific Rim, Optical Society of America, 2013: ThF2_4.
  24. J. Li, W. Zhang, S. Gao, Z. Bai, L. Wang, H. Liang, and T. Yan, “Simultaneous Force and Temperature Measurement Using S Fiber Taper in Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 26(3), 309–312 (2014).
    [Crossref]

2014 (7)

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, W. Sun, L. Yuan, G. Brambilla, and G. Farrell, “Photonic crystal fiber half-taper probe based refractometer,” Opt. Lett. 39(7), 2076–2079 (2014).
[Crossref] [PubMed]

X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
[Crossref]

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).
[Crossref] [PubMed]

J. Ma, W. Jin, H. Xuan, C. Wang, and H. L. Ho, “Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film,” Opt. Lett. 39(16), 4769–4772 (2014).
[Crossref] [PubMed]

L. Ren, Z. G. Jia, M. S. C. Ho, T. H. Yi, and H. N. Li, “Application of fiber Bragg grating based strain sensor in pipeline vortex-induced vibration measurement,” Sci. China Ser. E 57(9), 1714–1720 (2014).
[Crossref]

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

J. Li, W. Zhang, S. Gao, Z. Bai, L. Wang, H. Liang, and T. Yan, “Simultaneous Force and Temperature Measurement Using S Fiber Taper in Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 26(3), 309–312 (2014).
[Crossref]

2013 (5)

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marquesd, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem. 188, 1212–1217 (2013).

C. R. Liao, D. N. Wang, and Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
[Crossref] [PubMed]

S. Sulejmani, C. Sonnenfeld, T. Geernaert, G. Luyckx, D. Van Hemelrijck, P. Mergo, W. Urbanczyk, K. Chah, C. Caucheteur, P. Mégret, H. Thienpont, and F. Berghmans, “Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers,” Opt. Express 21(17), 20404–20416 (2013).
[Crossref] [PubMed]

J. Zheng, P. Yan, Y. Yu, Z. Ou, J. Wang, X. Chen, and C. Du, “Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach–Zehnder interferometer,” Opt. Commun. 297, 7–11 (2013).
[Crossref]

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287, 31–34 (2013).
[Crossref]

2012 (4)

2009 (1)

Z. C. Luo, A. P. Luo, and W. C. Xu, “Polarization-controlled tunable all-fiber comb filter based on a modified dual-pass Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 21(15), 1066–1068 (2009).
[Crossref]

2008 (2)

2007 (1)

B. Han and J. Ou, “Embedded piezoresistive cement-based stress/strain sensor,” Sensor. Actuat. A-Phys. 138(2), 294–298 (2007).

2006 (1)

1999 (1)

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Opt. Commun. 169(1), 159–165 (1999).
[Crossref]

1994 (1)

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).
[Crossref]

Amezcua-Correa, R.

An, H. L.

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Opt. Commun. 169(1), 159–165 (1999).
[Crossref]

Antonio-Lopez, J. E.

Avdeev, I. V.

Bai, Z.

J. Li, W. Zhang, S. Gao, Z. Bai, L. Wang, H. Liang, and T. Yan, “Simultaneous Force and Temperature Measurement Using S Fiber Taper in Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 26(3), 309–312 (2014).
[Crossref]

Bails, M. M.

Baptista, J. M.

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marquesd, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem. 188, 1212–1217 (2013).

Berghmans, F.

Bierlich, J.

Bo, L.

Brambilla, G.

Canning, J.

Caucheteur, C.

Chah, K.

Chen, C.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Chen, K. P.

Chen, L.

Chen, Q.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Chen, X.

J. Zheng, P. Yan, Y. Yu, Z. Ou, J. Wang, X. Chen, and C. Du, “Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach–Zehnder interferometer,” Opt. Commun. 297, 7–11 (2013).
[Crossref]

Chu, J.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287, 31–34 (2013).
[Crossref]

Claus, R. O.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).
[Crossref]

Culshaw, B.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).
[Crossref]

Ding, M.

Dong, X.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287, 31–34 (2013).
[Crossref]

H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008).
[Crossref] [PubMed]

Du, C.

J. Zheng, P. Yan, Y. Yu, Z. Ou, J. Wang, X. Chen, and C. Du, “Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach–Zehnder interferometer,” Opt. Commun. 297, 7–11 (2013).
[Crossref]

Duan, D. W.

Eznaveh, Z. S.

Farrell, G.

Ferreira, M. S.

Frazão, O.

Fu, H. Y.

Gao, S.

J. Li, W. Zhang, S. Gao, Z. Bai, L. Wang, H. Liang, and T. Yan, “Simultaneous Force and Temperature Measurement Using S Fiber Taper in Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 26(3), 309–312 (2014).
[Crossref]

Geernaert, T.

Gouveia, C.

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marquesd, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem. 188, 1212–1217 (2013).

Guan, C.

Han, B.

B. Han and J. Ou, “Embedded piezoresistive cement-based stress/strain sensor,” Sensor. Actuat. A-Phys. 138(2), 294–298 (2007).

Ho, H. L.

Ho, M. S. C.

L. Ren, Z. G. Jia, M. S. C. Ho, T. H. Yi, and H. N. Li, “Application of fiber Bragg grating based strain sensor in pipeline vortex-induced vibration measurement,” Sci. China Ser. E 57(9), 1714–1720 (2014).
[Crossref]

Hou, Y. S.

Hu, D. J. J.

Huang, C.

Jankovic, L.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).
[Crossref]

Jewart, C.

Jia, Z. G.

L. Ren, Z. G. Jia, M. S. C. Ho, T. H. Yi, and H. N. Li, “Application of fiber Bragg grating based strain sensor in pipeline vortex-induced vibration measurement,” Sci. China Ser. E 57(9), 1714–1720 (2014).
[Crossref]

Jiang, M.

Jiang, S.

Jin, W.

Jin, Y.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287, 31–34 (2013).
[Crossref]

Jorge, P. A. S.

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marquesd, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem. 188, 1212–1217 (2013).

Khijwania, S. K.

Kobelke, J.

Latifi, H.

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marquesd, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem. 188, 1212–1217 (2013).

Levitan, S. P.

Li, F.

Li, H. N.

L. Ren, Z. G. Jia, M. S. C. Ho, T. H. Yi, and H. N. Li, “Application of fiber Bragg grating based strain sensor in pipeline vortex-induced vibration measurement,” Sci. China Ser. E 57(9), 1714–1720 (2014).
[Crossref]

Li, J.

J. Li, W. Zhang, S. Gao, Z. Bai, L. Wang, H. Liang, and T. Yan, “Simultaneous Force and Temperature Measurement Using S Fiber Taper in Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 26(3), 309–312 (2014).
[Crossref]

Li, Y.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287, 31–34 (2013).
[Crossref]

Li, Z.

Liang, H.

J. Li, W. Zhang, S. Gao, Z. Bai, L. Wang, H. Liang, and T. Yan, “Simultaneous Force and Temperature Measurement Using S Fiber Taper in Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 26(3), 309–312 (2014).
[Crossref]

Liao, C.

Liao, C. R.

LiKamWa, P.

Lim, J. L.

Lin, X. Z.

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Opt. Commun. 169(1), 159–165 (1999).
[Crossref]

Liu, D.

Liu, H. D.

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Opt. Commun. 169(1), 159–165 (1999).
[Crossref]

Liu, S.

Liu, Y.

Lu, C.

Lu, P.

Luan, F.

Luo, A. P.

Z. C. Luo, A. P. Luo, and W. C. Xu, “Polarization-controlled tunable all-fiber comb filter based on a modified dual-pass Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 21(15), 1066–1068 (2009).
[Crossref]

Luo, Z. C.

Z. C. Luo, A. P. Luo, and W. C. Xu, “Polarization-controlled tunable all-fiber comb filter based on a modified dual-pass Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 21(15), 1066–1068 (2009).
[Crossref]

Luyckx, G.

Ma, J.

Marquesd, M. J. B.

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marquesd, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem. 188, 1212–1217 (2013).

McMillen, B.

Mégret, P.

Mergo, P.

Michie, W. C.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).
[Crossref]

Ou, J.

B. Han and J. Ou, “Embedded piezoresistive cement-based stress/strain sensor,” Sensor. Actuat. A-Phys. 138(2), 294–298 (2007).

Ou, Z.

J. Zheng, P. Yan, Y. Yu, Z. Ou, J. Wang, X. Chen, and C. Du, “Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach–Zehnder interferometer,” Opt. Commun. 297, 7–11 (2013).
[Crossref]

Pun, E. Y. B.

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Opt. Commun. 169(1), 159–165 (1999).
[Crossref]

Qu, J.

Rao, Y. J.

Ren, L.

L. Ren, Z. G. Jia, M. S. C. Ho, T. H. Yi, and H. N. Li, “Application of fiber Bragg grating based strain sensor in pipeline vortex-induced vibration measurement,” Sci. China Ser. E 57(9), 1714–1720 (2014).
[Crossref]

Santos, J. L.

Schülzgen, A.

Schuster, K.

Semenova, Y.

Shao, L. Y.

Shen, C.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287, 31–34 (2013).
[Crossref]

Shum, P. P.

Sonnenfeld, C.

Sulejmani, S.

Sun, H.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Sun, W.

Tam, H. Y.

Tang, J.

Thienpont, H.

Tong, W.

Urbanczyk, W.

Van Hemelrijck, D.

Vengsarkar, A. M.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).
[Crossref]

Wai, P. K. A.

Wang, C.

Wang, D. N.

Wang, J.

J. Zheng, P. Yan, Y. Yu, Z. Ou, J. Wang, X. Chen, and C. Du, “Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach–Zehnder interferometer,” Opt. Commun. 297, 7–11 (2013).
[Crossref]

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287, 31–34 (2013).
[Crossref]

Wang, L.

J. Li, W. Zhang, S. Gao, Z. Bai, L. Wang, H. Liang, and T. Yan, “Simultaneous Force and Temperature Measurement Using S Fiber Taper in Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 26(3), 309–312 (2014).
[Crossref]

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287, 31–34 (2013).
[Crossref]

Wang, P.

Wang, Q.

Wang, Y.

Wei, H.

Xiao, H.

Xu, W. C.

Z. C. Luo, A. P. Luo, and W. C. Xu, “Polarization-controlled tunable all-fiber comb filter based on a modified dual-pass Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 21(15), 1066–1068 (2009).
[Crossref]

Xuan, H.

Xue, Y.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yan, P.

J. Zheng, P. Yan, Y. Yu, Z. Ou, J. Wang, X. Chen, and C. Du, “Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach–Zehnder interferometer,” Opt. Commun. 297, 7–11 (2013).
[Crossref]

Yan, T.

J. Li, W. Zhang, S. Gao, Z. Bai, L. Wang, H. Liang, and T. Yan, “Simultaneous Force and Temperature Measurement Using S Fiber Taper in Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 26(3), 309–312 (2014).
[Crossref]

Yang, K.

Yang, R.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yi, T. H.

L. Ren, Z. G. Jia, M. S. C. Ho, T. H. Yi, and H. N. Li, “Application of fiber Bragg grating based strain sensor in pipeline vortex-induced vibration measurement,” Sci. China Ser. E 57(9), 1714–1720 (2014).
[Crossref]

Yu, Y.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

J. Zheng, P. Yan, Y. Yu, Z. Ou, J. Wang, X. Chen, and C. Du, “Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach–Zehnder interferometer,” Opt. Commun. 297, 7–11 (2013).
[Crossref]

Yuan, L.

Zhang, L.

Zhang, W.

J. Li, W. Zhang, S. Gao, Z. Bai, L. Wang, H. Liang, and T. Yan, “Simultaneous Force and Temperature Measurement Using S Fiber Taper in Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 26(3), 309–312 (2014).
[Crossref]

W. Zhang, Y. Liu, F. Li, and H. Xiao, “Fiber laser hydrophone based on double diaphragms: theory and experiment,” J. Lightwave Technol. 26(10), 1349–1352 (2008).
[Crossref]

Zhang, X.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Zhao, J.

Zheng, J.

J. Zheng, P. Yan, Y. Yu, Z. Ou, J. Wang, X. Chen, and C. Du, “Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach–Zehnder interferometer,” Opt. Commun. 297, 7–11 (2013).
[Crossref]

Zhong, C.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287, 31–34 (2013).
[Crossref]

Zhong, X.

Zhu, C.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Zhu, T.

Zibaii, M.

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marquesd, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem. 188, 1212–1217 (2013).

Zou, X.

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287, 31–34 (2013).
[Crossref]

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (3)

J. Li, W. Zhang, S. Gao, Z. Bai, L. Wang, H. Liang, and T. Yan, “Simultaneous Force and Temperature Measurement Using S Fiber Taper in Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 26(3), 309–312 (2014).
[Crossref]

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Polarization-controlled tunable all-fiber comb filter based on a modified dual-pass Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 21(15), 1066–1068 (2009).
[Crossref]

J. Lightwave Technol. (2)

W. Zhang, Y. Liu, F. Li, and H. Xiao, “Fiber laser hydrophone based on double diaphragms: theory and experiment,” J. Lightwave Technol. 26(10), 1349–1352 (2008).
[Crossref]

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).
[Crossref]

Opt. Commun. (3)

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Opt. Commun. 169(1), 159–165 (1999).
[Crossref]

J. Zheng, P. Yan, Y. Yu, Z. Ou, J. Wang, X. Chen, and C. Du, “Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach–Zehnder interferometer,” Opt. Commun. 297, 7–11 (2013).
[Crossref]

C. Shen, C. Zhong, J. Chu, X. Zou, Y. Jin, J. Wang, X. Dong, Y. Li, and L. Wang, “Temperature-insensitive strain sensor using a fiber loop mirror based on low-birefringence polarization-maintaining fibers,” Opt. Commun. 287, 31–34 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (8)

L. Zhang, P. Lu, L. Chen, C. Huang, D. Liu, and S. Jiang, “Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy,” Opt. Lett. 37(13), 2622–2624 (2012).
[PubMed]

C. R. Liao, D. N. Wang, and Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
[Crossref] [PubMed]

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, W. Sun, L. Yuan, G. Brambilla, and G. Farrell, “Photonic crystal fiber half-taper probe based refractometer,” Opt. Lett. 39(7), 2076–2079 (2014).
[Crossref] [PubMed]

X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
[Crossref]

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).
[Crossref] [PubMed]

J. Ma, W. Jin, H. Xuan, C. Wang, and H. L. Ho, “Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film,” Opt. Lett. 39(16), 4769–4772 (2014).
[Crossref] [PubMed]

C. Jewart, K. P. Chen, B. McMillen, M. M. Bails, S. P. Levitan, J. Canning, and I. V. Avdeev, “Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers,” Opt. Lett. 31(15), 2260–2262 (2006).
[Crossref] [PubMed]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
[Crossref] [PubMed]

Sci. China Ser. E (1)

L. Ren, Z. G. Jia, M. S. C. Ho, T. H. Yi, and H. N. Li, “Application of fiber Bragg grating based strain sensor in pipeline vortex-induced vibration measurement,” Sci. China Ser. E 57(9), 1714–1720 (2014).
[Crossref]

Sensor. Actuat. A-Phys. (1)

B. Han and J. Ou, “Embedded piezoresistive cement-based stress/strain sensor,” Sensor. Actuat. A-Phys. 138(2), 294–298 (2007).

Sensor. Actuat. B-Chem. (1)

C. Gouveia, M. Zibaii, H. Latifi, M. J. B. Marquesd, J. M. Baptista, and P. A. S. Jorge, “High resolution temperature independent refractive index measurement using differential white light interferometry,” Sensor. Actuat. B-Chem. 188, 1212–1217 (2013).

Other (1)

L. Mao, P. Lu, Z. Lao, and D. Liu, “Simultaneous Measurement of Curvature and Temperature Based on Mach-Zehnder Interferometer with Lateral Offset and Ultra-abrupt Taper,” Conference on Lasers and Electro-Optics/Pacific Rim, Optical Society of America, 2013: ThF2_4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the experiment setup. Inset: Cross-sectional view of the PM-PCF. BBS: broadband source; OC: optic fiber coupler; PC: polarization controller; OSA: optical spectrum analyzer.
Fig. 2
Fig. 2 Transmission spectrum of our cascaded interferometers structure.
Fig. 3
Fig. 3 (a) Transmission spectrums in ambient lateral stress of 0.76 kPa and 1.14 kPa without strain applied. (b) Transmission spectrums under ambient strain of 0 µε and 20 µε.
Fig. 4
Fig. 4 Shift of dip1 and dip2 as a function of lateral stress.
Fig. 5
Fig. 5 Dip1 and dip2 shift as a function of strain.

Tables (1)

Tables Icon

Table 1 Comparison of Experimental Sensitivities of Typical Schemes for Lateral Stress and Strain Measurement

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

φ 1 =k(B L 0 ).
Δ λ 1 = λ 2 B L 0 .
φ 2 =2 φ mz =2k( n eff Δl).
Δ λ 2 = λ 2 2 n eff Δl .
( ΔP ΔS )= ( AB CD ) 1 ( Δ λ dip1 Δ λ dip2 ).

Metrics