Abstract

We propose and demonstrate a novel RF front-end with broadened processing bandwidth, where a tunable microwave photonic filter based on optical frequency comb (OFC) is incorporated to accomplish simultaneous down-conversion and filtering. By designing additional phase shaping and time delay controlling, the frequency tunability of the system could be enhanced. More importantly, the beating interferences generated from broadband RF input could also be suppressed, which help to break the limitation on the processing bandwidth. In our experiments, a photonics RF receiver front-end for RF input with wide bandwidth of almost 20 GHz was realized using 10-GHz-space OFC, where the center frequency of the pass band signals could be tuned continuously.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
RF photonic front-end integrating with local oscillator loop

H. Yu, M. Chen, H. Gao, S. Yang, H. Chen, and S. Xie
Opt. Express 22(4) 3918-3923 (2014)

Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase

Xiaoqi Zhu, Feiya Chen, Huanfa Peng, and Zhangyuan Chen
Opt. Express 25(8) 9232-9243 (2017)

Ultra-broadband Photonics-Based RF Front-End Toward 5G Networks

A. L. M. Muniz, R. M. Borges, Regivan N. Da Silva, D. F. Noque, and Arismar Cerqueira S.
J. Opt. Commun. Netw. 8(11) B35-B42 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008).
    [Crossref]
  4. H. Yu, M. Chen, H. Gao, S. Yang, H. Chen, and S. Xie, “RF photonic front-end integrating with local oscillator loop,” Opt. Express 22(4), 3918–3923 (2014).
    [Crossref] [PubMed]
  5. V. R. Pagán, B. M. Haas, and T. E. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express 19(2), 883–895 (2011).
    [Crossref] [PubMed]
  6. A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” IEEE J. Lightwave Technol. 29(16), 2394–2401 (2011).
    [Crossref]
  7. H. Yu, M. Chen, P. Li, S. Yang, H. Chen, and S. Xie, “Silicon-on-insulator narrow-passband filter based on cascaded MZIs incorporating enhanced FSR for downconverting analog photonic links,” Opt. Express 21(6), 6749–6755 (2013).
    [Crossref] [PubMed]
  8. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [Crossref]
  9. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
    [Crossref]
  10. M. Song, V. Torres-Company, and A. M. Weiner, “Noise comparison of RF photonic filters based on coherent and incoherent multiwavelength sources,” IEEE Photon. Technol. Lett. 24(14), 1236–1238 (2012).
    [Crossref]
  11. J. Wang, M. Chen, H. Chen, S. Yang, and S. Xie, “Large-tap microwave photonics filter based on recirculating frequency shifting loop,” IEEE Photon. Technol. Lett. 26(12), 1219–1222 (2014).
    [Crossref]
  12. J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photon. Rev. 7(4), L34–L38 (2013).
    [Crossref]
  13. V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Simultaneous broadband microwave downconversion and programmable complex filtering by optical frequency comb shaping,” Opt. Lett. 37(19), 3993–3995 (2012).
    [Crossref] [PubMed]
  14. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
    [Crossref]

2014 (2)

H. Yu, M. Chen, H. Gao, S. Yang, H. Chen, and S. Xie, “RF photonic front-end integrating with local oscillator loop,” Opt. Express 22(4), 3918–3923 (2014).
[Crossref] [PubMed]

J. Wang, M. Chen, H. Chen, S. Yang, and S. Xie, “Large-tap microwave photonics filter based on recirculating frequency shifting loop,” IEEE Photon. Technol. Lett. 26(12), 1219–1222 (2014).
[Crossref]

2013 (2)

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photon. Rev. 7(4), L34–L38 (2013).
[Crossref]

H. Yu, M. Chen, P. Li, S. Yang, H. Chen, and S. Xie, “Silicon-on-insulator narrow-passband filter based on cascaded MZIs incorporating enhanced FSR for downconverting analog photonic links,” Opt. Express 21(6), 6749–6755 (2013).
[Crossref] [PubMed]

2012 (3)

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

M. Song, V. Torres-Company, and A. M. Weiner, “Noise comparison of RF photonic filters based on coherent and incoherent multiwavelength sources,” IEEE Photon. Technol. Lett. 24(14), 1236–1238 (2012).
[Crossref]

V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Simultaneous broadband microwave downconversion and programmable complex filtering by optical frequency comb shaping,” Opt. Lett. 37(19), 3993–3995 (2012).
[Crossref] [PubMed]

2011 (2)

V. R. Pagán, B. M. Haas, and T. E. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express 19(2), 883–895 (2011).
[Crossref] [PubMed]

A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” IEEE J. Lightwave Technol. 29(16), 2394–2401 (2011).
[Crossref]

2010 (1)

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

2009 (1)

2008 (1)

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (1)

Agarwal, A.

A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” IEEE J. Lightwave Technol. 29(16), 2394–2401 (2011).
[Crossref]

Banwell, T.

A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” IEEE J. Lightwave Technol. 29(16), 2394–2401 (2011).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[Crossref]

Chen, H.

Chen, M.

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Gao, H.

Haas, B. M.

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Hossein-Zadeh, M.

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008).
[Crossref]

Leaird, D. E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Simultaneous broadband microwave downconversion and programmable complex filtering by optical frequency comb shaping,” Opt. Lett. 37(19), 3993–3995 (2012).
[Crossref] [PubMed]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Li, P.

Li, S.

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photon. Rev. 7(4), L34–L38 (2013).
[Crossref]

Liao, J.

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photon. Rev. 7(4), L34–L38 (2013).
[Crossref]

Long, C. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Murphy, T. E.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Ortega, B.

Pagán, V. R.

Pastor, D.

Song, M.

M. Song, V. Torres-Company, and A. M. Weiner, “Noise comparison of RF photonic filters based on coherent and incoherent multiwavelength sources,” IEEE Photon. Technol. Lett. 24(14), 1236–1238 (2012).
[Crossref]

Supradeepa, V. R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Torres-Company, V.

M. Song, V. Torres-Company, and A. M. Weiner, “Noise comparison of RF photonic filters based on coherent and incoherent multiwavelength sources,” IEEE Photon. Technol. Lett. 24(14), 1236–1238 (2012).
[Crossref]

V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Simultaneous broadband microwave downconversion and programmable complex filtering by optical frequency comb shaping,” Opt. Lett. 37(19), 3993–3995 (2012).
[Crossref] [PubMed]

Vahala, K. J.

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008).
[Crossref]

Wang, J.

J. Wang, M. Chen, H. Chen, S. Yang, and S. Xie, “Large-tap microwave photonics filter based on recirculating frequency shifting loop,” IEEE Photon. Technol. Lett. 26(12), 1219–1222 (2014).
[Crossref]

Weiner, A. M.

M. Song, V. Torres-Company, and A. M. Weiner, “Noise comparison of RF photonic filters based on coherent and incoherent multiwavelength sources,” IEEE Photon. Technol. Lett. 24(14), 1236–1238 (2012).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Simultaneous broadband microwave downconversion and programmable complex filtering by optical frequency comb shaping,” Opt. Lett. 37(19), 3993–3995 (2012).
[Crossref] [PubMed]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Wen, H.

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photon. Rev. 7(4), L34–L38 (2013).
[Crossref]

Woodward, T. K.

A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” IEEE J. Lightwave Technol. 29(16), 2394–2401 (2011).
[Crossref]

Wu, R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Xie, S.

Xue, X.

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photon. Rev. 7(4), L34–L38 (2013).
[Crossref]

Yang, S.

Yao, J. P.

Yu, H.

Zhang, H.

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photon. Rev. 7(4), L34–L38 (2013).
[Crossref]

Zheng, X.

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photon. Rev. 7(4), L34–L38 (2013).
[Crossref]

Zhou, B.

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photon. Rev. 7(4), L34–L38 (2013).
[Crossref]

IEEE J. Lightwave Technol. (1)

A. Agarwal, T. Banwell, and T. K. Woodward, “Optically filtered microwave photonic links for RF signal processing applications,” IEEE J. Lightwave Technol. 29(16), 2394–2401 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (3)

M. Hossein-Zadeh and K. J. Vahala, “Photonic RF down-converter based on optomechanical oscillation,” IEEE Photon. Technol. Lett. 20(4), 234–236 (2008).
[Crossref]

M. Song, V. Torres-Company, and A. M. Weiner, “Noise comparison of RF photonic filters based on coherent and incoherent multiwavelength sources,” IEEE Photon. Technol. Lett. 24(14), 1236–1238 (2012).
[Crossref]

J. Wang, M. Chen, H. Chen, S. Yang, and S. Xie, “Large-tap microwave photonics filter based on recirculating frequency shifting loop,” IEEE Photon. Technol. Lett. 26(12), 1219–1222 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

J. Lightwave Technol. (2)

Laser Photon. Rev. (1)

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photon. Rev. 7(4), L34–L38 (2013).
[Crossref]

Nat. Photonics (2)

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The architecture diagram of proposed OFC-based front-end of RF photonic receiver, VDL: variable delay line, PD: photo-detector, LPF: low-pass filter, LNA: low nosie amplifier, CS-SSB modulation: carrier-suppressed single-sideband modulation.
Fig. 2
Fig. 2 The simulated power envelope of the output IF signals for the input RF signals ranging from 0 to 25 GHz.
Fig. 3
Fig. 3 (a) The experimental setup for proposed RF front-end, CW: continuous wave, PC: polarization controller, PPS: programmable phase shper, (b) The spectrum (blue) and waveform (left-top, red) of the generated OFC.
Fig. 4
Fig. 4 (a) The experimental power envelope of the IF output for RF input ranging from 0.5 GHz to 19.5 GHz, (b) The comparison between suppressed and reserved response for low-frequency RF input at 0.6GHz that obtained with and without the VDL structure
Fig. 5
Fig. 5 (a) The power envelops in IF band when τ is set to be 73 ps, 82 ps and 88 ps, where the to-be–suppressed interference signal from adjacent Nyquist zones have been neglected. (b) The measured power of output IF signals for the input RF signals from 5.5 GHz to 14.5 GHz with time dealy tuned from 44 ps to 92 ps

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E 1 (t)=α n=0 N1 e n e j[ 2π( f n + f RF )t+θ( f n )+φ( f n + f RF ) ]
E 2 (t)= m=0 N1 e m e j[ 2π f m ( t+τ )+θ( f m )+φ( f m ) ]
i(t) E 1 (t) E 2 * (t)+ E 1 * (t) E 2 (t) =α n=0 N1 m=0 N1 e n e m * e j2π[ f RF (mn)δf ]t e j{ [ θ( f n )+φ( f n + f RF )θ( f m )φ( f m )2π f m τ ] } +c.c
f IF = f RF rδf or f IF =rδf f RF
r=mn=( δf/2+ f RF )/δf
H( f IF ) n=0 N1r ( e n e n+r * ) e j{ n2π[ f IF r f D f τ ]T }
H( f IF ) n=0 N1r ( e n * e n+r ) e j{ n2π[ f IF +r f D + f τ ]T }
f D =δf( θ 2 / φ 2 )
f τ =τ/ ( 2π φ 2 )
T=2πδf φ 2
( f 0,RF - r 0 δf )modFSR=( r 0 f D + f τ )modFSR
r 0 =( δf/2+ f 0,RF )/δf
f D <βδf
f 0,RF - r 0 δf= r 0 f D +( f τ modFSR )
( f τ modFSR)[ 0, δf /2 ]
f B,max δf( 2FSR/| f D | )

Metrics