Abstract

We use Raman amplification in hydrogen-filled hollow-core kagomé photonic crystal fiber to generate high energy pulses in pure single higher-order modes. The desired higher-order mode at the Stokes frequency is precisely seeded by injecting a pulse of light from the side, using a prism to select the required modal propagation constant. An intense pump pulse in the fundamental mode transfers its energy to the Stokes seed pulse with measured gains exceeding 60 dB and output pulse energies as high as 8 µJ. A pressure gradient is used to suppress stimulated Raman scattering into the fundamental mode at the Stokes frequency. The growth of the Stokes pulse energy is experimentally and theoretically investigated for six different higher-order modes. The technique has significant advantages over the use of spatial light modulators to synthesize higher-order mode patterns, since it is very difficult to perfectly match the actual eigenmode of the fiber core, especially for higher-order modes with complex multi-lobed transverse field profiles.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multimode-pumped Raman amplification of a higher order mode in a large mode area fiber

Sheng Zhu, Shankar Pidishety, Yutong Feng, Soonki Hong, Jeff Demas, Raghuraman Sidharthan, Seongwoo Yoo, Siddharth Ramachandran, Balaji Srinivasan, and Johan Nilsson
Opt. Express 26(18) 23295-23304 (2018)

Dominance of backward stimulated Raman scattering in gas-filled hollow-core photonic crystal fibers

Manoj K. Mridha, David Novoa, and Philip St.J. Russell
Optica 5(5) 570-576 (2018)

Efficient anti-Stokes generation via intermodal stimulated Raman scattering in gas-filled hollow-core PCF

B. M. Trabold, A. Abdolvand, T. G. Euser, and P. St.J. Russell
Opt. Express 21(24) 29711-29718 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Opt. Express 16(3), 2147–2152 (2008).
    [Crossref] [PubMed]
  2. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing In Fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  3. O. A. Schmidt, T. G. Euser, and P. St. J. Russell, “Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber,” Opt. Express 21(24), 29383–29391 (2013).
    [Crossref] [PubMed]
  4. J. A. Pechkis and F. K. Fatemi, “Cold atom guidance in a capillary using blue-detuned, hollow optical modes,” Opt. Express 20(12), 13409–13418 (2012).
    [Crossref] [PubMed]
  5. W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St. J. Russell, and J. P. Woerdman, “Fiber Transport of Spatially Entangled Photons,” Phys. Rev. Lett. 106(24), 240505 (2011).
    [Crossref] [PubMed]
  6. C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling Different Degrees of Freedom by Quadrature Squeezing Cylindrically Polarized Modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
    [Crossref] [PubMed]
  7. L. Carbone, C. Bogan, P. Fulda, A. Freise, and B. Willke, “Generation of High-Purity Higher-Order Laguerre-Gauss Beams at High Laser Power,” Phys. Rev. Lett. 110(25), 251101 (2013).
    [Crossref] [PubMed]
  8. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008).
    [Crossref] [PubMed]
  9. R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
    [Crossref] [PubMed]
  10. J. E. Midwinter, “The prism-taper coupler for the excitation of single modes in optical transmission fibres,” Opt. Quantum Electron. 7(4), 297–303 (1975).
    [Crossref]
  11. D.-I. Yeom, H. C. Park, I. K. Hwang, and B. Y. Kim, “Tunable gratings in a hollow-core photonic bandgap fiber based on acousto-optic interaction,” Opt. Express 17(12), 9933–9939 (2009).
    [Crossref] [PubMed]
  12. V. R. Daria, P. John Rodrigo, and J. Glückstad, “Programmable complex field coupling to high-order guided modes of micro-structured fibres,” Opt. Commun. 232(1–6), 229–237 (2004).
    [Crossref]
  13. N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
    [Crossref] [PubMed]
  14. J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, “A higher-order-mode erbium-doped-fiber amplifier,” Opt. Express 18(17), 17651–17657 (2010).
    [Crossref] [PubMed]
  15. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
    [Crossref]
  16. B. M. Trabold, D. Novoa, A. Abdolvand, and P. St. J. Russell, “Selective excitation of higher order modes in hollow-core PCF via prism-coupling,” Opt. Lett. 39(13), 3736–3739 (2014).
    [Crossref] [PubMed]
  17. B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, and P. St. J. Russell, “Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber,” Opt. Lett. 38(5), 600–602 (2013).
    [Crossref] [PubMed]
  18. J. F. Reintjes, “Stimulated Raman and Brillouin Scattering,” in Handbook of Laser Science and Technology, Supplement 2: Optical Materials, W. M. J., ed. (CRC, 1995), p. 334.
  19. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
    [Crossref] [PubMed]
  20. F. Couny, O. Carraz, and F. Benabid, “Control of transient regime of stimulated Raman scattering using hollow-core PCF,” J. Opt. Soc. Am. B 26(6), 1209–1215 (2009).
    [Crossref]
  21. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 431783 (1964).

2014 (2)

2013 (4)

B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, and P. St. J. Russell, “Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber,” Opt. Lett. 38(5), 600–602 (2013).
[Crossref] [PubMed]

L. Carbone, C. Bogan, P. Fulda, A. Freise, and B. Willke, “Generation of High-Purity Higher-Order Laguerre-Gauss Beams at High Laser Power,” Phys. Rev. Lett. 110(25), 251101 (2013).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing In Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

O. A. Schmidt, T. G. Euser, and P. St. J. Russell, “Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber,” Opt. Express 21(24), 29383–29391 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (2)

W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St. J. Russell, and J. P. Woerdman, “Fiber Transport of Spatially Entangled Photons,” Phys. Rev. Lett. 106(24), 240505 (2011).
[Crossref] [PubMed]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling Different Degrees of Freedom by Quadrature Squeezing Cylindrically Polarized Modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

2008 (3)

2004 (2)

V. R. Daria, P. John Rodrigo, and J. Glückstad, “Programmable complex field coupling to high-order guided modes of micro-structured fibres,” Opt. Commun. 232(1–6), 229–237 (2004).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

1975 (1)

J. E. Midwinter, “The prism-taper coupler for the excitation of single modes in optical transmission fibres,” Opt. Quantum Electron. 7(4), 297–303 (1975).
[Crossref]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 431783 (1964).

Abdolvand, A.

Aiello, A.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling Different Degrees of Freedom by Quadrature Squeezing Cylindrically Polarized Modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[Crossref] [PubMed]

Andersen, U. L.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling Different Degrees of Freedom by Quadrature Squeezing Cylindrically Polarized Modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[Crossref] [PubMed]

Banzer, P.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling Different Degrees of Freedom by Quadrature Squeezing Cylindrically Polarized Modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[Crossref] [PubMed]

Benabid, F.

F. Couny, O. Carraz, and F. Benabid, “Control of transient regime of stimulated Raman scattering using hollow-core PCF,” J. Opt. Soc. Am. B 26(6), 1209–1215 (2009).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Bogan, C.

L. Carbone, C. Bogan, P. Fulda, A. Freise, and B. Willke, “Generation of High-Purity Higher-Order Laguerre-Gauss Beams at High Laser Power,” Phys. Rev. Lett. 110(25), 251101 (2013).
[Crossref] [PubMed]

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing In Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref] [PubMed]

Brambilla, G.

Carbone, L.

L. Carbone, C. Bogan, P. Fulda, A. Freise, and B. Willke, “Generation of High-Purity Higher-Order Laguerre-Gauss Beams at High Laser Power,” Phys. Rev. Lett. 110(25), 251101 (2013).
[Crossref] [PubMed]

Carraz, O.

Chen, J. S. Y.

Cherif, R.

Couny, F.

F. Couny, O. Carraz, and F. Benabid, “Control of transient regime of stimulated Raman scattering using hollow-core PCF,” J. Opt. Soc. Am. B 26(6), 1209–1215 (2009).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Daria, V. R.

V. R. Daria, P. John Rodrigo, and J. Glückstad, “Programmable complex field coupling to high-order guided modes of micro-structured fibres,” Opt. Commun. 232(1–6), 229–237 (2004).
[Crossref]

Degiorgio, V.

DeSantolo, A. M.

DiGiovanni, D. J.

DiMarcello, F.

Eliel, E. R.

W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St. J. Russell, and J. P. Woerdman, “Fiber Transport of Spatially Entangled Photons,” Phys. Rev. Lett. 106(24), 240505 (2011).
[Crossref] [PubMed]

Elser, D.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling Different Degrees of Freedom by Quadrature Squeezing Cylindrically Polarized Modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[Crossref] [PubMed]

Euser, T. G.

Fatemi, F. K.

Fini, J. M.

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, “A higher-order-mode erbium-doped-fiber amplifier,” Opt. Express 18(17), 17651–17657 (2010).
[Crossref] [PubMed]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Fleming, J.

Förtsch, M.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling Different Degrees of Freedom by Quadrature Squeezing Cylindrically Polarized Modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[Crossref] [PubMed]

Freise, A.

L. Carbone, C. Bogan, P. Fulda, A. Freise, and B. Willke, “Generation of High-Purity Higher-Order Laguerre-Gauss Beams at High Laser Power,” Phys. Rev. Lett. 110(25), 251101 (2013).
[Crossref] [PubMed]

Fulda, P.

L. Carbone, C. Bogan, P. Fulda, A. Freise, and B. Willke, “Generation of High-Purity Higher-Order Laguerre-Gauss Beams at High Laser Power,” Phys. Rev. Lett. 110(25), 251101 (2013).
[Crossref] [PubMed]

Gabriel, C.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling Different Degrees of Freedom by Quadrature Squeezing Cylindrically Polarized Modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[Crossref] [PubMed]

Ghalmi, S.

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, “A higher-order-mode erbium-doped-fiber amplifier,” Opt. Express 18(17), 17651–17657 (2010).
[Crossref] [PubMed]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Glückstad, J.

V. R. Daria, P. John Rodrigo, and J. Glückstad, “Programmable complex field coupling to high-order guided modes of micro-structured fibres,” Opt. Commun. 232(1–6), 229–237 (2004).
[Crossref]

Golowich, S.

Headley, C.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing In Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Hwang, I. K.

Ismaeel, R.

John Rodrigo, P.

V. R. Daria, P. John Rodrigo, and J. Glückstad, “Programmable complex field coupling to high-order guided modes of micro-structured fibres,” Opt. Commun. 232(1–6), 229–237 (2004).
[Crossref]

Joly, N. Y.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling Different Degrees of Freedom by Quadrature Squeezing Cylindrically Polarized Modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[Crossref] [PubMed]

Jung, Y.

Kaminski, C. F.

Kim, B. Y.

Knight, J. C.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing In Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref] [PubMed]

Lee, T.

Leuchs, G.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling Different Degrees of Freedom by Quadrature Squeezing Cylindrically Polarized Modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[Crossref] [PubMed]

Löffler, W.

W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St. J. Russell, and J. P. Woerdman, “Fiber Transport of Spatially Entangled Photons,” Phys. Rev. Lett. 106(24), 240505 (2011).
[Crossref] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 431783 (1964).

Marquardt, Ch.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling Different Degrees of Freedom by Quadrature Squeezing Cylindrically Polarized Modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[Crossref] [PubMed]

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Midwinter, J. E.

J. E. Midwinter, “The prism-taper coupler for the excitation of single modes in optical transmission fibres,” Opt. Quantum Electron. 7(4), 297–303 (1975).
[Crossref]

Monberg, E.

Nicholson, J. W.

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, “A higher-order-mode erbium-doped-fiber amplifier,” Opt. Express 18(17), 17651–17657 (2010).
[Crossref] [PubMed]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Nold, J.

Novoa, D.

Oduro, B.

Park, H. C.

Pechkis, J. A.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing In Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

N. Bozinovic, S. Golowich, P. Kristensen, and S. Ramachandran, “Control of orbital angular momentum of light with optical fibers,” Opt. Lett. 37(13), 2451–2453 (2012).
[Crossref] [PubMed]

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, “A higher-order-mode erbium-doped-fiber amplifier,” Opt. Express 18(17), 17651–17657 (2010).
[Crossref] [PubMed]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing In Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Russell, P. St. J.

B. M. Trabold, D. Novoa, A. Abdolvand, and P. St. J. Russell, “Selective excitation of higher order modes in hollow-core PCF via prism-coupling,” Opt. Lett. 39(13), 3736–3739 (2014).
[Crossref] [PubMed]

O. A. Schmidt, T. G. Euser, and P. St. J. Russell, “Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber,” Opt. Express 21(24), 29383–29391 (2013).
[Crossref] [PubMed]

B. M. Trabold, A. Abdolvand, T. G. Euser, A. M. Walser, and P. St. J. Russell, “Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber,” Opt. Lett. 38(5), 600–602 (2013).
[Crossref] [PubMed]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling Different Degrees of Freedom by Quadrature Squeezing Cylindrically Polarized Modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[Crossref] [PubMed]

W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St. J. Russell, and J. P. Woerdman, “Fiber Transport of Spatially Entangled Photons,” Phys. Rev. Lett. 106(24), 240505 (2011).
[Crossref] [PubMed]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Scharrer, M.

W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St. J. Russell, and J. P. Woerdman, “Fiber Transport of Spatially Entangled Photons,” Phys. Rev. Lett. 106(24), 240505 (2011).
[Crossref] [PubMed]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008).
[Crossref] [PubMed]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 431783 (1964).

Schmidt, O. A.

Tartara, L.

Trabold, B. M.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing In Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Walser, A. M.

Whyte, G.

Willke, B.

L. Carbone, C. Bogan, P. Fulda, A. Freise, and B. Willke, “Generation of High-Purity Higher-Order Laguerre-Gauss Beams at High Laser Power,” Phys. Rev. Lett. 110(25), 251101 (2013).
[Crossref] [PubMed]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing In Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Woerdman, J. P.

W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St. J. Russell, and J. P. Woerdman, “Fiber Transport of Spatially Entangled Photons,” Phys. Rev. Lett. 106(24), 240505 (2011).
[Crossref] [PubMed]

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Yeom, D.-I.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing In Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Zghal, M.

Zhong, W.

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling Different Degrees of Freedom by Quadrature Squeezing Cylindrically Polarized Modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[Crossref] [PubMed]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 431783 (1964).

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2(6), 429–448 (2008).
[Crossref]

Opt. Commun. (1)

V. R. Daria, P. John Rodrigo, and J. Glückstad, “Programmable complex field coupling to high-order guided modes of micro-structured fibres,” Opt. Commun. 232(1–6), 229–237 (2004).
[Crossref]

Opt. Express (7)

D.-I. Yeom, H. C. Park, I. K. Hwang, and B. Y. Kim, “Tunable gratings in a hollow-core photonic bandgap fiber based on acousto-optic interaction,” Opt. Express 17(12), 9933–9939 (2009).
[Crossref] [PubMed]

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, “A higher-order-mode erbium-doped-fiber amplifier,” Opt. Express 18(17), 17651–17657 (2010).
[Crossref] [PubMed]

O. A. Schmidt, T. G. Euser, and P. St. J. Russell, “Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber,” Opt. Express 21(24), 29383–29391 (2013).
[Crossref] [PubMed]

J. A. Pechkis and F. K. Fatemi, “Cold atom guidance in a capillary using blue-detuned, hollow optical modes,” Opt. Express 20(12), 13409–13418 (2012).
[Crossref] [PubMed]

R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Opt. Express 16(3), 2147–2152 (2008).
[Crossref] [PubMed]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 16(22), 17972–17981 (2008).
[Crossref] [PubMed]

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

J. E. Midwinter, “The prism-taper coupler for the excitation of single modes in optical transmission fibres,” Opt. Quantum Electron. 7(4), 297–303 (1975).
[Crossref]

Phys. Rev. Lett. (4)

W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St. J. Russell, and J. P. Woerdman, “Fiber Transport of Spatially Entangled Photons,” Phys. Rev. Lett. 106(24), 240505 (2011).
[Crossref] [PubMed]

C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Förtsch, D. Elser, U. L. Andersen, Ch. Marquardt, P. St. J. Russell, and G. Leuchs, “Entangling Different Degrees of Freedom by Quadrature Squeezing Cylindrically Polarized Modes,” Phys. Rev. Lett. 106(6), 060502 (2011).
[Crossref] [PubMed]

L. Carbone, C. Bogan, P. Fulda, A. Freise, and B. Willke, “Generation of High-Purity Higher-Order Laguerre-Gauss Beams at High Laser Power,” Phys. Rev. Lett. 110(25), 251101 (2013).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing In Fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Other (1)

J. F. Reintjes, “Stimulated Raman and Brillouin Scattering,” in Handbook of Laser Science and Technology, Supplement 2: Optical Materials, W. M. J., ed. (CRC, 1995), p. 334.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Experimental configuration for amplifying side-seeded HOMs. Pulses from a Nd:YAG laser (1064 nm) are split into two paths. In path (i), 16 µJ of pump pulse energy is launched into a H2-filled hollow-core photonic bandgap fiber (PBF), resulting in generation of a pulse at the first rotational Stokes frequency. The remaining pump energy is spectrally filtered out using a dielectric bandpass filter (F) and the Stokes pulse launched into a single mode fiber (SMF) that is mounted on the rotation stage of a side-coupling scheme. By choosing an appropriate coupling angle ϕ, the collimated Stokes light emerging from the SMF is used to seed a pure HOM in a H2-filled kagomé-PCF (core diameter 37 µm). The pump pulse in path (ii) is injected into the fundamental mode of the kagomé-PCF core. A variable delay line is used to ensure temporal overlap between the co-propagating pump and HOM seed pulses. Over a fiber length of 50 cm, intermodal stimulated Raman scattering (SRS) amplifies the HOM. The spatial profile and pulse energy of the amplified HOM at the output are monitored with a CCD camera and an InGaAs photodiode (PD). (b) Schematic (not to scale) of the system just before the pulses overlap in the kagomé-PCF core. The seed pulse at 1135 nm (blue) is incident on a silica prism (1° tilt angle) placed in contact with the side of the kagomé-PCF. (c) Schematic (not to scale) of the system when the pulses overlap in the core and energy is transferred from the pump to the HOM. The gas pressure gradient from 0 to 4.5 bar (along + z) is represented by green shading.
Fig. 2
Fig. 2 Normalized spatial intensity profiles of six amplified HOMs measured using a CCD camera. An SEM of the kagomé core structure is superimposed for reference. The upper row shows unamplified or weakly amplified mode profiles with Stokes pulse energies WS ~2 pJ. On the bottom row, the modes are strongly amplified while preserving their distinctive spatial profile. An intermediate state is displayed in the middle row. The mode order and gains are as follows: (a,b,c) LP21: 0 dB, 30 dB, 61.5 dB; (d,e,f) LP02: 0 dB, 30 dB, 66 dB; (g,h,i) LP41: 9.5 dB, 33 dB, 39.5 dB; (j,k,l) LP22: 20 dB, 61.5 dB, 66 dB; (m,n,o) LP03: 13 dB, 47.8 dB, 64.8 dB; (p,q,r) LP61: 10 dB, 27 dB, 31.8 dB. In addition, the LP01, LP11, LP31 and LP12 modes were also observed and successfully amplified.
Fig. 3
Fig. 3 The measured Stokes output pulse energies (spheres) of six HOMs plotted as a function of launched pump pulse energy. The lines correspond to solutions of Eq. (2) for g = 0.5 cm/GW. For clarity, the experimental results are separated into two graphs with three modes in each.
Fig. 4
Fig. 4 The pump (1064 nm) and amplified LP02 Stokes (1135 nm) pulses are frequency selected with bandpass filters and their output pulse energies WP(L) and WS(L) measured as the pump energy is increased. The sum of the pulse energies in all the spectral components Wtot is measured at the fiber output by removing the spectral filters. The transmitted pump pulse energy in the absence of any seed, WP,NS, saturates at around 20 µJ. The full red line is the theoretical maximum pump output energy, extrapolated from WP(L) at low energies. In these measurements, the H2 gas pressure increased from 0 to 7.5 bar along the fiber.

Tables (1)

Tables Icon

Table 1 Measured optical parameters of HOMs

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W S z =( gF A P t eff W P (z) α 0 ) W S ,
W S (z)= W S (0)exp( gF A P t eff W P α 0 )z.

Metrics