Abstract

We demonstrate a compactly integrated polarization beam splitter (PBS) with high polarization extinction ratios greater than 20 dB over the full C-band wavelength range based on a simple bridged silicon nanowaveguide directional coupler. The PBS device is designed via three dimensional finite-difference time-domain (3D-FDTD) simulation, and fabricated experimentally. The optimum dimension of the bridge waveguide is determined to be 7.5-μm-long and 500 nm-wide for 250-nm thick silicon core. At the 1,550-nm wavelength, the measured polarization extinction ratios (PERs) of the PBS device are 22.5 dB and 22.9 dB for TE and TM polarization modes, respectively, and its corresponding insertion losses (ILs) are about 2.1 dB and 1.8 dB, both PERs and ILs within the maximum error range of ± 2.0 dB.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-extinction-ratio directional-coupler-type polarization beam splitter with a bridged silicon wire waveguide

Yoohan Kim, Moon Hyeok Lee, Yudeuk Kim, and Kyong Hon Kim
Opt. Lett. 43(14) 3241-3244 (2018)

Polarization-independent directional coupler and polarization beam splitter based on asymmetric cross-slot waveguides

Li-Min Chang, Lei Liu, Yuan-Hao Gong, Man-Qing Tan, Yu-De Yu, and Zhi-Yong Li
Appl. Opt. 57(4) 678-683 (2018)

High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations

Yong Zhang, Yu He, Jiayang Wu, Xinhong Jiang, Ruili Liu, Ciyuan Qiu, Xiaoqing Jiang, Jianyi Yang, Christine Tremblay, and Yikai Su
Opt. Express 24(6) 6586-6593 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. F. C. Stephens, M. Tan, I. D. Phillips, S. Sygletos, P. Harper, and N. J. Doran, “1.14 Tb/s DP-QPSK WDM polarization-diverse optical phase conjugation,” Opt. Express 22(10), 11840–11848 (2014).
    [Crossref] [PubMed]
  2. N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, and R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” Opt. Express 22(14), 17246–17253 (2014).
    [Crossref] [PubMed]
  3. Z. Su, E. Timurdogan, E. S. Hosseini, J. Sun, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Four-port integrated polarizing beam splitter,” Opt. Lett. 39(4), 965–968 (2014).
    [Crossref] [PubMed]
  4. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1–e12 (2012).
    [Crossref]
  5. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
    [Crossref] [PubMed]
  6. I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17(1), 100–102 (2005).
    [Crossref]
  7. X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An Ultracompact Directional Coupler Based on GaAs Cross-Slot Waveguide,” IEEE Photon. Technol. Lett. 22(17), 1324–1326 (2010).
    [Crossref]
  8. Y. Shi, D. Dai, and S. He, “Proposal for an Ultracompact Polarization-Beam Splitter Based on a Photonic-Crystal-Assisted Multimode Interference Coupler,” IEEE Photon. Technol. Lett. 19(11), 825–827 (2007).
    [Crossref]
  9. X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 17115 (2006).
    [Crossref]
  10. B. Yang, S. Shin, and D. Zhang, “Ultrashort Polarization Splitter Using Two-Mode Interference in Silicon Photonic Wires,” IEEE Photon. Technol. Lett. 21(7), 432–434 (2009).
    [Crossref]
  11. T. K. Liang and H. K. Tsang, “Integrated Polarization Beam Splitter in High Index Contrast Silicon-on-Insulator Waveguides,” IEEE Photon. Technol. Lett. 17(2), 393–395 (2005).
    [Crossref]
  12. F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012).
    [Crossref] [PubMed]
  13. X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
    [Crossref] [PubMed]
  14. D. W. Kim, S. H. Kim, S. H. Lee, H. S. Jong, J.-M. Lee, H. Lee, and K. H. Kim, “Enhanced four-wave-mixing effects by large group indices of one-dimensional silicon photonic crystal waveguides,” Opt. Express 21(24), 30019–30029 (2013).
    [Crossref] [PubMed]

2014 (4)

2013 (1)

2012 (2)

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012).
[Crossref] [PubMed]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1–e12 (2012).
[Crossref]

2010 (1)

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An Ultracompact Directional Coupler Based on GaAs Cross-Slot Waveguide,” IEEE Photon. Technol. Lett. 22(17), 1324–1326 (2010).
[Crossref]

2009 (1)

B. Yang, S. Shin, and D. Zhang, “Ultrashort Polarization Splitter Using Two-Mode Interference in Silicon Photonic Wires,” IEEE Photon. Technol. Lett. 21(7), 432–434 (2009).
[Crossref]

2007 (1)

Y. Shi, D. Dai, and S. He, “Proposal for an Ultracompact Polarization-Beam Splitter Based on a Photonic-Crystal-Assisted Multimode Interference Coupler,” IEEE Photon. Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

2006 (2)

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 17115 (2006).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
[Crossref] [PubMed]

2005 (2)

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

T. K. Liang and H. K. Tsang, “Integrated Polarization Beam Splitter in High Index Contrast Silicon-on-Insulator Waveguides,” IEEE Photon. Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

Ang, S. S. N.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An Ultracompact Directional Coupler Based on GaAs Cross-Slot Waveguide,” IEEE Photon. Technol. Lett. 22(17), 1324–1326 (2010).
[Crossref]

Ao, X.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 17115 (2006).
[Crossref]

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1–e12 (2012).
[Crossref]

Bowers, J. E.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1–e12 (2012).
[Crossref]

Bruno, N.

Chew, A. B.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An Ultracompact Directional Coupler Based on GaAs Cross-Slot Waveguide,” IEEE Photon. Technol. Lett. 22(17), 1324–1326 (2010).
[Crossref]

Coolbaugh, D. D.

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

Dai, D.

X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
[Crossref] [PubMed]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1–e12 (2012).
[Crossref]

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012).
[Crossref] [PubMed]

Y. Shi, D. Dai, and S. He, “Proposal for an Ultracompact Polarization-Beam Splitter Based on a Photonic-Crystal-Assisted Multimode Interference Coupler,” IEEE Photon. Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

Doran, N. J.

Fukuda, H.

Guan, X.

Guerreiro, T.

Harper, P.

He, S.

Y. Shi, D. Dai, and S. He, “Proposal for an Ultracompact Polarization-Beam Splitter Based on a Photonic-Crystal-Assisted Multimode Interference Coupler,” IEEE Photon. Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 17115 (2006).
[Crossref]

Hosseini, E. S.

Itabashi, S.-i.

Jong, H. S.

Kim, D. W.

Kim, K. H.

Kim, S. H.

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

Leake, G.

Lee, H.

Lee, J.-M.

Lee, S. H.

Liang, T. K.

T. K. Liang and H. K. Tsang, “Integrated Polarization Beam Splitter in High Index Contrast Silicon-on-Insulator Waveguides,” IEEE Photon. Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

Liu, L.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 17115 (2006).
[Crossref]

Lou, F.

Martin, A.

Mei, T.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An Ultracompact Directional Coupler Based on GaAs Cross-Slot Waveguide,” IEEE Photon. Technol. Lett. 22(17), 1324–1326 (2010).
[Crossref]

Phillips, I. D.

Sanguinetti, B.

Shi, Y.

X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
[Crossref] [PubMed]

Y. Shi, D. Dai, and S. He, “Proposal for an Ultracompact Polarization-Beam Splitter Based on a Photonic-Crystal-Assisted Multimode Interference Coupler,” IEEE Photon. Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

Shin, S.

B. Yang, S. Shin, and D. Zhang, “Ultrashort Polarization Splitter Using Two-Mode Interference in Silicon Photonic Wires,” IEEE Photon. Technol. Lett. 21(7), 432–434 (2009).
[Crossref]

Shinojima, H.

Stephens, M. F. C.

Su, Z.

Sun, J.

Sygletos, S.

Tan, M.

Teng, J.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An Ultracompact Directional Coupler Based on GaAs Cross-Slot Waveguide,” IEEE Photon. Technol. Lett. 22(17), 1324–1326 (2010).
[Crossref]

Thew, R. T.

Timurdogan, E.

Tsang, H. K.

T. K. Liang and H. K. Tsang, “Integrated Polarization Beam Splitter in High Index Contrast Silicon-on-Insulator Waveguides,” IEEE Photon. Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

Tsuchizawa, T.

Tu, X.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An Ultracompact Directional Coupler Based on GaAs Cross-Slot Waveguide,” IEEE Photon. Technol. Lett. 22(17), 1324–1326 (2010).
[Crossref]

Watanabe, T.

Watts, M. R.

Wosinski, L.

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012).
[Crossref] [PubMed]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 17115 (2006).
[Crossref]

Wu, H.

Yamada, K.

Yang, B.

B. Yang, S. Shin, and D. Zhang, “Ultrashort Polarization Splitter Using Two-Mode Interference in Silicon Photonic Wires,” IEEE Photon. Technol. Lett. 21(7), 432–434 (2009).
[Crossref]

Zhang, D.

B. Yang, S. Shin, and D. Zhang, “Ultrashort Polarization Splitter Using Two-Mode Interference in Silicon Photonic Wires,” IEEE Photon. Technol. Lett. 21(7), 432–434 (2009).
[Crossref]

Appl. Phys. Lett. (1)

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89(17), 17115 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (5)

B. Yang, S. Shin, and D. Zhang, “Ultrashort Polarization Splitter Using Two-Mode Interference in Silicon Photonic Wires,” IEEE Photon. Technol. Lett. 21(7), 432–434 (2009).
[Crossref]

T. K. Liang and H. K. Tsang, “Integrated Polarization Beam Splitter in High Index Contrast Silicon-on-Insulator Waveguides,” IEEE Photon. Technol. Lett. 17(2), 393–395 (2005).
[Crossref]

I. Kiyat, A. Aydinli, and N. Dagli, “A Compact Silicon-on-Insulator Polarization Splitter,” IEEE Photon. Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An Ultracompact Directional Coupler Based on GaAs Cross-Slot Waveguide,” IEEE Photon. Technol. Lett. 22(17), 1324–1326 (2010).
[Crossref]

Y. Shi, D. Dai, and S. He, “Proposal for an Ultracompact Polarization-Beam Splitter Based on a Photonic-Crystal-Assisted Multimode Interference Coupler,” IEEE Photon. Technol. Lett. 19(11), 825–827 (2007).
[Crossref]

Light Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1–e12 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagrams of the proposed PBS based on a directional coupler with a bridged waveguide (a) quarter view and (b) front view.
Fig. 2
Fig. 2 The simulated electric field distributions of both polarization modes in the bridged silicon waveguide coupler.
Fig. 3
Fig. 3 The calculated PER values for (a) TE and (b) TM polarization modes.
Fig. 4
Fig. 4 Calculated PERs as functions (a) of variation of the bridge waveguide width ΔWbridge and (b) of the gap size between two adjacent waveguides of the bridged DC.
Fig. 5
Fig. 5 (a) Schematic diagram of the bridged DC-type PBS and (b) optical microscope image of the fabricated device.
Fig. 6
Fig. 6 Measured transmission spectra of the bridged-type PBS device for both polarization modes.
Fig. 7
Fig. 7 Measured PER values of the bridged DC as functions of (a) the coupling length and (b) width of the bridged waveguide.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PE R TE,TM = 10log 10 ( T bar,cross / T cross,bar )
I L TE,TM =10 log 10 ( T bar,cross ),

Metrics