Abstract

Periodic nanopatterns can be generated using lithography based on the Talbot effect or optical interference. However, these techniques have restrictions that limit their performance. High resolution Talbot lithography is limited by the very small depth of focus and the demanding requirements in the fabrication of the master mask. Interference lithography, with large DOF and high resolution, is limited to simple periodic patterns. This paper describes a hybrid extreme ultraviolet lithography approach that combines Talbot lithography and interference lithography to render an interference pattern with a lattice determined by a Talbot image. As a result, the method enables filling the arbitrary shaped cells produced by the Talbot image with interference patterns. Detailed modeling, system design and experimental results using a tabletop EUV laser are presented.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fractional Talbot lithography with extreme ultraviolet light

Hyun-su Kim, Wei Li, Serhiy Danylyuk, William S. Brocklesby, Mario C. Marconi, and Larissa Juschkin
Opt. Lett. 39(24) 6969-6972 (2014)

4X reduction extreme ultraviolet interferometric lithography

Artak Isoyan, A. Wüest, John Wallace, Fan Jiang, and Franco Cerrina
Opt. Express 16(12) 9106-9111 (2008)

Broadband interference lithography at extreme ultraviolet and soft x-ray wavelengths

Nassir Mojarad, Daniel Fan, Jens Gobrecht, and Yasin Ekinci
Opt. Lett. 39(8) 2286-2289 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
    [Crossref]
  2. J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett. 107(4), 043903 (2011).
    [Crossref] [PubMed]
  3. E. T. Carlen and A. van den Berg, “Labs-on-a-chip and nanosensors for medical applications and life sciences,” in Proceedings of 2013 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2013), pp. 8.7.1–8.7.4.
    [Crossref]
  4. L. J. Heyderman, H. H. Solak, C. David, D. Atkinson, R. P. Cowburn, and F. Nolting, “Arrays of nanoscale magnetic dots: fabrication by x-ray interference lithography and characterization,” Appl. Phys. Lett. 85(21), 4989–4991 (2004).
    [Crossref]
  5. A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
    [Crossref] [PubMed]
  6. W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. B 23(6), 2700–2704 (2005).
    [Crossref]
  7. A. K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B 29(6), 06FF02 (2011).
    [Crossref]
  8. H. H. Solak, Y. Ekinci, P. Kaser, and S. Park, “Photon-beam lithography reaches 12.5 nm half-pitch resolution,” J. Vac. Sci. Technol. B 25(1), 91–95 (2007).
    [Crossref]
  9. J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a discharge pumped table-top soft-x-ray laser,” Phys. Rev. Lett. 73(16), 2192–2195 (1994).
    [Crossref] [PubMed]
  10. B. A. Reagan, W. Li, L. Urbanski, K. A. Wernsing, C. Salsbury, C. Baumgarten, M. C. Marconi, C. S. Menoni, and J. J. Rocca, “Hour-long continuous operation of a tabletop soft x-ray laser at 50-100 Hz repetition rate,” Opt. Express 21(23), 28380–28386 (2013).
    [Crossref] [PubMed]
  11. P. W. Wachulak, M. G. Capeluto, M. C. Marconi, C. S. Menoni, and J. J. Rocca, “Patterning of nano-scale arrays by table-top extreme ultraviolet laser interferometric lithography,” Opt. Express 15(6), 3465–3469 (2007).
    [Crossref] [PubMed]
  12. A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. W. Wachulak, L. Urbanski, J. J. Rocca, C. S. Menoni, and M. C. Marconi, “Talbot lithography: self-imaging of complex structures,” J. Vac. Sci. Technol. B 27(6), 2931–2937 (2009).
    [Crossref]
  13. H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
    [Crossref] [PubMed]
  14. C. Zanke, M. H. Qi, and H. I. Smith, “Large-area patterning for photonic crystals via coherent diffraction lithography,” J. Vac. Sci. Technol. B 22(6), 3352–3355 (2004).
    [Crossref]
  15. N. D. Lai, W. Liang, J. Lin, and C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13(14), 5331–5337 (2005).
    [Crossref] [PubMed]
  16. T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference,” Appl. Opt. 52(1), 61–72 (2013).
    [Crossref] [PubMed]
  17. J. Goodman, Introduction to Fourier Optics (McGraw-Hill,1996).
  18. Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 63(3), 033802 (2001).
    [Crossref]
  19. M. C. Marconi, J. L. A. Chilla, C. H. Moreno, B. R. Benware, and J. J. Rocca, “Measurement of the spatial coherence buildup in a discharge pumped table-top soft x-ray laser,” Phys. Rev. Lett. 79(15), 2799–2802 (1997).
    [Crossref]
  20. L. Urbanski, M. C. Marconi, L. M. Meng, M. Berrill, O. Guilbaud, A. Klisnick, and J. J. Rocca, “Spectral linewidth of a Ne-like Ar capillary discharge soft-x-ray laser and its dependence on amplification beyond gain saturation,” Phys. Rev. A 85(3), 033837 (2012).
    [Crossref]
  21. Y. Wang, M. A. Larotonda, B. M. Luther, D. Alessi, M. Berrill, V. N. Shlyaptsev, and J. J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm,” Phys. Rev. A 72(5), 053807 (2005).
    [Crossref]
  22. Y. Wang, L. Yin, S. Wang, M. C. Marconi, J. Dunn, E. Gullikson, and J. J. Rocca, “Single-shot soft x-ray laser linewidth measurement using a grating interferometer,” Opt. Lett. 38(23), 5004–5007 (2013).
    [Crossref] [PubMed]

2013 (3)

2012 (1)

L. Urbanski, M. C. Marconi, L. M. Meng, M. Berrill, O. Guilbaud, A. Klisnick, and J. J. Rocca, “Spectral linewidth of a Ne-like Ar capillary discharge soft-x-ray laser and its dependence on amplification beyond gain saturation,” Phys. Rev. A 85(3), 033837 (2012).
[Crossref]

2011 (4)

A. K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B 29(6), 06FF02 (2011).
[Crossref]

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett. 107(4), 043903 (2011).
[Crossref] [PubMed]

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
[Crossref] [PubMed]

2009 (1)

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. W. Wachulak, L. Urbanski, J. J. Rocca, C. S. Menoni, and M. C. Marconi, “Talbot lithography: self-imaging of complex structures,” J. Vac. Sci. Technol. B 27(6), 2931–2937 (2009).
[Crossref]

2007 (2)

2005 (3)

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. B 23(6), 2700–2704 (2005).
[Crossref]

Y. Wang, M. A. Larotonda, B. M. Luther, D. Alessi, M. Berrill, V. N. Shlyaptsev, and J. J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm,” Phys. Rev. A 72(5), 053807 (2005).
[Crossref]

N. D. Lai, W. Liang, J. Lin, and C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13(14), 5331–5337 (2005).
[Crossref] [PubMed]

2004 (2)

C. Zanke, M. H. Qi, and H. I. Smith, “Large-area patterning for photonic crystals via coherent diffraction lithography,” J. Vac. Sci. Technol. B 22(6), 3352–3355 (2004).
[Crossref]

L. J. Heyderman, H. H. Solak, C. David, D. Atkinson, R. P. Cowburn, and F. Nolting, “Arrays of nanoscale magnetic dots: fabrication by x-ray interference lithography and characterization,” Appl. Phys. Lett. 85(21), 4989–4991 (2004).
[Crossref]

2001 (1)

Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 63(3), 033802 (2001).
[Crossref]

2000 (1)

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

1997 (1)

M. C. Marconi, J. L. A. Chilla, C. H. Moreno, B. R. Benware, and J. J. Rocca, “Measurement of the spatial coherence buildup in a discharge pumped table-top soft x-ray laser,” Phys. Rev. Lett. 79(15), 2799–2802 (1997).
[Crossref]

1994 (1)

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a discharge pumped table-top soft-x-ray laser,” Phys. Rev. Lett. 73(16), 2192–2195 (1994).
[Crossref] [PubMed]

Alessi, D.

Y. Wang, M. A. Larotonda, B. M. Luther, D. Alessi, M. Berrill, V. N. Shlyaptsev, and J. J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm,” Phys. Rev. A 72(5), 053807 (2005).
[Crossref]

Atkinson, D.

L. J. Heyderman, H. H. Solak, C. David, D. Atkinson, R. P. Cowburn, and F. Nolting, “Arrays of nanoscale magnetic dots: fabrication by x-ray interference lithography and characterization,” Appl. Phys. Lett. 85(21), 4989–4991 (2004).
[Crossref]

Attwood, D. T.

Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 63(3), 033802 (2001).
[Crossref]

Baumgarten, C.

Benware, B. R.

M. C. Marconi, J. L. A. Chilla, C. H. Moreno, B. R. Benware, and J. J. Rocca, “Measurement of the spatial coherence buildup in a discharge pumped table-top soft x-ray laser,” Phys. Rev. Lett. 79(15), 2799–2802 (1997).
[Crossref]

Berrill, M.

L. Urbanski, M. C. Marconi, L. M. Meng, M. Berrill, O. Guilbaud, A. Klisnick, and J. J. Rocca, “Spectral linewidth of a Ne-like Ar capillary discharge soft-x-ray laser and its dependence on amplification beyond gain saturation,” Phys. Rev. A 85(3), 033837 (2012).
[Crossref]

Y. Wang, M. A. Larotonda, B. M. Luther, D. Alessi, M. Berrill, V. N. Shlyaptsev, and J. J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm,” Phys. Rev. A 72(5), 053807 (2005).
[Crossref]

Bhattacharya, J.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Biswas, R.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Brueck, S. R. J.

A. K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B 29(6), 06FF02 (2011).
[Crossref]

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. B 23(6), 2700–2704 (2005).
[Crossref]

Burrow, G. M.

Campbell, M.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Capeluto, M. G.

Carlen, E. T.

E. T. Carlen and A. van den Berg, “Labs-on-a-chip and nanosensors for medical applications and life sciences,” in Proceedings of 2013 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2013), pp. 8.7.1–8.7.4.
[Crossref]

Cerrina, F.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. W. Wachulak, L. Urbanski, J. J. Rocca, C. S. Menoni, and M. C. Marconi, “Talbot lithography: self-imaging of complex structures,” J. Vac. Sci. Technol. B 27(6), 2931–2937 (2009).
[Crossref]

Chakravarty, N.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Chang, C.

Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 63(3), 033802 (2001).
[Crossref]

Cheng, Y. C.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. W. Wachulak, L. Urbanski, J. J. Rocca, C. S. Menoni, and M. C. Marconi, “Talbot lithography: self-imaging of complex structures,” J. Vac. Sci. Technol. B 27(6), 2931–2937 (2009).
[Crossref]

Chilla, J. L. A.

M. C. Marconi, J. L. A. Chilla, C. H. Moreno, B. R. Benware, and J. J. Rocca, “Measurement of the spatial coherence buildup in a discharge pumped table-top soft x-ray laser,” Phys. Rev. Lett. 79(15), 2799–2802 (1997).
[Crossref]

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a discharge pumped table-top soft-x-ray laser,” Phys. Rev. Lett. 73(16), 2192–2195 (1994).
[Crossref] [PubMed]

Clube, F.

Cortázar, O. D.

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a discharge pumped table-top soft-x-ray laser,” Phys. Rev. Lett. 73(16), 2192–2195 (1994).
[Crossref] [PubMed]

Cowburn, R. P.

L. J. Heyderman, H. H. Solak, C. David, D. Atkinson, R. P. Cowburn, and F. Nolting, “Arrays of nanoscale magnetic dots: fabrication by x-ray interference lithography and characterization,” Appl. Phys. Lett. 85(21), 4989–4991 (2004).
[Crossref]

Dais, C.

Dalal, V. L.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

David, C.

L. J. Heyderman, H. H. Solak, C. David, D. Atkinson, R. P. Cowburn, and F. Nolting, “Arrays of nanoscale magnetic dots: fabrication by x-ray interference lithography and characterization,” Appl. Phys. Lett. 85(21), 4989–4991 (2004).
[Crossref]

Denning, R. G.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Dunn, J.

Ekinci, Y.

H. H. Solak, Y. Ekinci, P. Kaser, and S. Park, “Photon-beam lithography reaches 12.5 nm half-pitch resolution,” J. Vac. Sci. Technol. B 25(1), 91–95 (2007).
[Crossref]

Fan, W. J.

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. B 23(6), 2700–2704 (2005).
[Crossref]

Gaylord, T. K.

Guilbaud, O.

L. Urbanski, M. C. Marconi, L. M. Meng, M. Berrill, O. Guilbaud, A. Klisnick, and J. J. Rocca, “Spectral linewidth of a Ne-like Ar capillary discharge soft-x-ray laser and its dependence on amplification beyond gain saturation,” Phys. Rev. A 85(3), 033837 (2012).
[Crossref]

Gullikson, E.

Harrison, M. T.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Hartshorn, D.

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a discharge pumped table-top soft-x-ray laser,” Phys. Rev. Lett. 73(16), 2192–2195 (1994).
[Crossref] [PubMed]

Heyderman, L. J.

L. J. Heyderman, H. H. Solak, C. David, D. Atkinson, R. P. Cowburn, and F. Nolting, “Arrays of nanoscale magnetic dots: fabrication by x-ray interference lithography and characterization,” Appl. Phys. Lett. 85(21), 4989–4991 (2004).
[Crossref]

Hsu, C.

Isoyan, A.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. W. Wachulak, L. Urbanski, J. J. Rocca, C. S. Menoni, and M. C. Marconi, “Talbot lithography: self-imaging of complex structures,” J. Vac. Sci. Technol. B 27(6), 2931–2937 (2009).
[Crossref]

Jiang, F.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. W. Wachulak, L. Urbanski, J. J. Rocca, C. S. Menoni, and M. C. Marconi, “Talbot lithography: self-imaging of complex structures,” J. Vac. Sci. Technol. B 27(6), 2931–2937 (2009).
[Crossref]

Kaser, P.

H. H. Solak, Y. Ekinci, P. Kaser, and S. Park, “Photon-beam lithography reaches 12.5 nm half-pitch resolution,” J. Vac. Sci. Technol. B 25(1), 91–95 (2007).
[Crossref]

Klisnick, A.

L. Urbanski, M. C. Marconi, L. M. Meng, M. Berrill, O. Guilbaud, A. Klisnick, and J. J. Rocca, “Spectral linewidth of a Ne-like Ar capillary discharge soft-x-ray laser and its dependence on amplification beyond gain saturation,” Phys. Rev. A 85(3), 033837 (2012).
[Crossref]

Lai, N. D.

Lalanne, P.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett. 107(4), 043903 (2011).
[Crossref] [PubMed]

Larotonda, M. A.

Y. Wang, M. A. Larotonda, B. M. Luther, D. Alessi, M. Berrill, V. N. Shlyaptsev, and J. J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm,” Phys. Rev. A 72(5), 053807 (2005).
[Crossref]

Leibovici, M. C. R.

Li, W.

Liang, W.

Lin, J.

Liu, H. T.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett. 107(4), 043903 (2011).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 63(3), 033802 (2001).
[Crossref]

Luther, B. M.

Y. Wang, M. A. Larotonda, B. M. Luther, D. Alessi, M. Berrill, V. N. Shlyaptsev, and J. J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm,” Phys. Rev. A 72(5), 053807 (2005).
[Crossref]

Malloy, K. J.

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. B 23(6), 2700–2704 (2005).
[Crossref]

Marconi, M. C.

B. A. Reagan, W. Li, L. Urbanski, K. A. Wernsing, C. Salsbury, C. Baumgarten, M. C. Marconi, C. S. Menoni, and J. J. Rocca, “Hour-long continuous operation of a tabletop soft x-ray laser at 50-100 Hz repetition rate,” Opt. Express 21(23), 28380–28386 (2013).
[Crossref] [PubMed]

Y. Wang, L. Yin, S. Wang, M. C. Marconi, J. Dunn, E. Gullikson, and J. J. Rocca, “Single-shot soft x-ray laser linewidth measurement using a grating interferometer,” Opt. Lett. 38(23), 5004–5007 (2013).
[Crossref] [PubMed]

L. Urbanski, M. C. Marconi, L. M. Meng, M. Berrill, O. Guilbaud, A. Klisnick, and J. J. Rocca, “Spectral linewidth of a Ne-like Ar capillary discharge soft-x-ray laser and its dependence on amplification beyond gain saturation,” Phys. Rev. A 85(3), 033837 (2012).
[Crossref]

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. W. Wachulak, L. Urbanski, J. J. Rocca, C. S. Menoni, and M. C. Marconi, “Talbot lithography: self-imaging of complex structures,” J. Vac. Sci. Technol. B 27(6), 2931–2937 (2009).
[Crossref]

P. W. Wachulak, M. G. Capeluto, M. C. Marconi, C. S. Menoni, and J. J. Rocca, “Patterning of nano-scale arrays by table-top extreme ultraviolet laser interferometric lithography,” Opt. Express 15(6), 3465–3469 (2007).
[Crossref] [PubMed]

M. C. Marconi, J. L. A. Chilla, C. H. Moreno, B. R. Benware, and J. J. Rocca, “Measurement of the spatial coherence buildup in a discharge pumped table-top soft x-ray laser,” Phys. Rev. Lett. 79(15), 2799–2802 (1997).
[Crossref]

Meng, L. M.

L. Urbanski, M. C. Marconi, L. M. Meng, M. Berrill, O. Guilbaud, A. Klisnick, and J. J. Rocca, “Spectral linewidth of a Ne-like Ar capillary discharge soft-x-ray laser and its dependence on amplification beyond gain saturation,” Phys. Rev. A 85(3), 033837 (2012).
[Crossref]

Menoni, C. S.

Moreno, C. H.

M. C. Marconi, J. L. A. Chilla, C. H. Moreno, B. R. Benware, and J. J. Rocca, “Measurement of the spatial coherence buildup in a discharge pumped table-top soft x-ray laser,” Phys. Rev. Lett. 79(15), 2799–2802 (1997).
[Crossref]

Nolting, F.

L. J. Heyderman, H. H. Solak, C. David, D. Atkinson, R. P. Cowburn, and F. Nolting, “Arrays of nanoscale magnetic dots: fabrication by x-ray interference lithography and characterization,” Appl. Phys. Lett. 85(21), 4989–4991 (2004).
[Crossref]

Park, S.

H. H. Solak, Y. Ekinci, P. Kaser, and S. Park, “Photon-beam lithography reaches 12.5 nm half-pitch resolution,” J. Vac. Sci. Technol. B 25(1), 91–95 (2007).
[Crossref]

Pattnaik, S.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Qi, M. H.

C. Zanke, M. H. Qi, and H. I. Smith, “Large-area patterning for photonic crystals via coherent diffraction lithography,” J. Vac. Sci. Technol. B 22(6), 3352–3355 (2004).
[Crossref]

Raub, A. K.

A. K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B 29(6), 06FF02 (2011).
[Crossref]

Reagan, B. A.

Rocca, J. J.

B. A. Reagan, W. Li, L. Urbanski, K. A. Wernsing, C. Salsbury, C. Baumgarten, M. C. Marconi, C. S. Menoni, and J. J. Rocca, “Hour-long continuous operation of a tabletop soft x-ray laser at 50-100 Hz repetition rate,” Opt. Express 21(23), 28380–28386 (2013).
[Crossref] [PubMed]

Y. Wang, L. Yin, S. Wang, M. C. Marconi, J. Dunn, E. Gullikson, and J. J. Rocca, “Single-shot soft x-ray laser linewidth measurement using a grating interferometer,” Opt. Lett. 38(23), 5004–5007 (2013).
[Crossref] [PubMed]

L. Urbanski, M. C. Marconi, L. M. Meng, M. Berrill, O. Guilbaud, A. Klisnick, and J. J. Rocca, “Spectral linewidth of a Ne-like Ar capillary discharge soft-x-ray laser and its dependence on amplification beyond gain saturation,” Phys. Rev. A 85(3), 033837 (2012).
[Crossref]

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. W. Wachulak, L. Urbanski, J. J. Rocca, C. S. Menoni, and M. C. Marconi, “Talbot lithography: self-imaging of complex structures,” J. Vac. Sci. Technol. B 27(6), 2931–2937 (2009).
[Crossref]

P. W. Wachulak, M. G. Capeluto, M. C. Marconi, C. S. Menoni, and J. J. Rocca, “Patterning of nano-scale arrays by table-top extreme ultraviolet laser interferometric lithography,” Opt. Express 15(6), 3465–3469 (2007).
[Crossref] [PubMed]

Y. Wang, M. A. Larotonda, B. M. Luther, D. Alessi, M. Berrill, V. N. Shlyaptsev, and J. J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm,” Phys. Rev. A 72(5), 053807 (2005).
[Crossref]

Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 63(3), 033802 (2001).
[Crossref]

M. C. Marconi, J. L. A. Chilla, C. H. Moreno, B. R. Benware, and J. J. Rocca, “Measurement of the spatial coherence buildup in a discharge pumped table-top soft x-ray laser,” Phys. Rev. Lett. 79(15), 2799–2802 (1997).
[Crossref]

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a discharge pumped table-top soft-x-ray laser,” Phys. Rev. Lett. 73(16), 2192–2195 (1994).
[Crossref] [PubMed]

Salsbury, C.

Sauvan, C.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett. 107(4), 043903 (2011).
[Crossref] [PubMed]

Seminario, M.

Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 63(3), 033802 (2001).
[Crossref]

Sharp, D. N.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Shlyaptsev, V.

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a discharge pumped table-top soft-x-ray laser,” Phys. Rev. Lett. 73(16), 2192–2195 (1994).
[Crossref] [PubMed]

Shlyaptsev, V. N.

Y. Wang, M. A. Larotonda, B. M. Luther, D. Alessi, M. Berrill, V. N. Shlyaptsev, and J. J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm,” Phys. Rev. A 72(5), 053807 (2005).
[Crossref]

Slafer, W. D.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Smith, H. I.

C. Zanke, M. H. Qi, and H. I. Smith, “Large-area patterning for photonic crystals via coherent diffraction lithography,” J. Vac. Sci. Technol. B 22(6), 3352–3355 (2004).
[Crossref]

Solak, H. H.

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
[Crossref] [PubMed]

H. H. Solak, Y. Ekinci, P. Kaser, and S. Park, “Photon-beam lithography reaches 12.5 nm half-pitch resolution,” J. Vac. Sci. Technol. B 25(1), 91–95 (2007).
[Crossref]

L. J. Heyderman, H. H. Solak, C. David, D. Atkinson, R. P. Cowburn, and F. Nolting, “Arrays of nanoscale magnetic dots: fabrication by x-ray interference lithography and characterization,” Appl. Phys. Lett. 85(21), 4989–4991 (2004).
[Crossref]

Tomasel, F. G.

Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 63(3), 033802 (2001).
[Crossref]

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a discharge pumped table-top soft-x-ray laser,” Phys. Rev. Lett. 73(16), 2192–2195 (1994).
[Crossref] [PubMed]

Turberfield, A. J.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Urbanski, L.

B. A. Reagan, W. Li, L. Urbanski, K. A. Wernsing, C. Salsbury, C. Baumgarten, M. C. Marconi, C. S. Menoni, and J. J. Rocca, “Hour-long continuous operation of a tabletop soft x-ray laser at 50-100 Hz repetition rate,” Opt. Express 21(23), 28380–28386 (2013).
[Crossref] [PubMed]

L. Urbanski, M. C. Marconi, L. M. Meng, M. Berrill, O. Guilbaud, A. Klisnick, and J. J. Rocca, “Spectral linewidth of a Ne-like Ar capillary discharge soft-x-ray laser and its dependence on amplification beyond gain saturation,” Phys. Rev. A 85(3), 033837 (2012).
[Crossref]

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. W. Wachulak, L. Urbanski, J. J. Rocca, C. S. Menoni, and M. C. Marconi, “Talbot lithography: self-imaging of complex structures,” J. Vac. Sci. Technol. B 27(6), 2931–2937 (2009).
[Crossref]

van den Berg, A.

E. T. Carlen and A. van den Berg, “Labs-on-a-chip and nanosensors for medical applications and life sciences,” in Proceedings of 2013 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2013), pp. 8.7.1–8.7.4.
[Crossref]

Wachulak, P. W.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. W. Wachulak, L. Urbanski, J. J. Rocca, C. S. Menoni, and M. C. Marconi, “Talbot lithography: self-imaging of complex structures,” J. Vac. Sci. Technol. B 27(6), 2931–2937 (2009).
[Crossref]

P. W. Wachulak, M. G. Capeluto, M. C. Marconi, C. S. Menoni, and J. J. Rocca, “Patterning of nano-scale arrays by table-top extreme ultraviolet laser interferometric lithography,” Opt. Express 15(6), 3465–3469 (2007).
[Crossref] [PubMed]

Wang, S.

Wang, Y.

Y. Wang, L. Yin, S. Wang, M. C. Marconi, J. Dunn, E. Gullikson, and J. J. Rocca, “Single-shot soft x-ray laser linewidth measurement using a grating interferometer,” Opt. Lett. 38(23), 5004–5007 (2013).
[Crossref] [PubMed]

Y. Wang, M. A. Larotonda, B. M. Luther, D. Alessi, M. Berrill, V. N. Shlyaptsev, and J. J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm,” Phys. Rev. A 72(5), 053807 (2005).
[Crossref]

Wernsing, K. A.

Yang, J.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett. 107(4), 043903 (2011).
[Crossref] [PubMed]

Yin, L.

Zanke, C.

C. Zanke, M. H. Qi, and H. I. Smith, “Large-area patterning for photonic crystals via coherent diffraction lithography,” J. Vac. Sci. Technol. B 22(6), 3352–3355 (2004).
[Crossref]

Zhang, S.

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. B 23(6), 2700–2704 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. D. Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

L. J. Heyderman, H. H. Solak, C. David, D. Atkinson, R. P. Cowburn, and F. Nolting, “Arrays of nanoscale magnetic dots: fabrication by x-ray interference lithography and characterization,” Appl. Phys. Lett. 85(21), 4989–4991 (2004).
[Crossref]

J. Vac. Sci. Technol. B (5)

W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. B 23(6), 2700–2704 (2005).
[Crossref]

A. K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B 29(6), 06FF02 (2011).
[Crossref]

H. H. Solak, Y. Ekinci, P. Kaser, and S. Park, “Photon-beam lithography reaches 12.5 nm half-pitch resolution,” J. Vac. Sci. Technol. B 25(1), 91–95 (2007).
[Crossref]

C. Zanke, M. H. Qi, and H. I. Smith, “Large-area patterning for photonic crystals via coherent diffraction lithography,” J. Vac. Sci. Technol. B 22(6), 3352–3355 (2004).
[Crossref]

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. W. Wachulak, L. Urbanski, J. J. Rocca, C. S. Menoni, and M. C. Marconi, “Talbot lithography: self-imaging of complex structures,” J. Vac. Sci. Technol. B 27(6), 2931–2937 (2009).
[Crossref]

Nature (1)

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (3)

Y. Liu, M. Seminario, F. G. Tomasel, C. Chang, J. J. Rocca, and D. T. Attwood, “Achievement of essentially full spatial coherence in a high-average-power soft-x-ray laser,” Phys. Rev. A 63(3), 033802 (2001).
[Crossref]

L. Urbanski, M. C. Marconi, L. M. Meng, M. Berrill, O. Guilbaud, A. Klisnick, and J. J. Rocca, “Spectral linewidth of a Ne-like Ar capillary discharge soft-x-ray laser and its dependence on amplification beyond gain saturation,” Phys. Rev. A 85(3), 033837 (2012).
[Crossref]

Y. Wang, M. A. Larotonda, B. M. Luther, D. Alessi, M. Berrill, V. N. Shlyaptsev, and J. J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm,” Phys. Rev. A 72(5), 053807 (2005).
[Crossref]

Phys. Rev. Lett. (3)

M. C. Marconi, J. L. A. Chilla, C. H. Moreno, B. R. Benware, and J. J. Rocca, “Measurement of the spatial coherence buildup in a discharge pumped table-top soft x-ray laser,” Phys. Rev. Lett. 79(15), 2799–2802 (1997).
[Crossref]

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett. 107(4), 043903 (2011).
[Crossref] [PubMed]

J. J. Rocca, V. Shlyaptsev, F. G. Tomasel, O. D. Cortázar, D. Hartshorn, and J. L. A. Chilla, “Demonstration of a discharge pumped table-top soft-x-ray laser,” Phys. Rev. Lett. 73(16), 2192–2195 (1994).
[Crossref] [PubMed]

Other (2)

E. T. Carlen and A. van den Berg, “Labs-on-a-chip and nanosensors for medical applications and life sciences,” in Proceedings of 2013 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2013), pp. 8.7.1–8.7.4.
[Crossref]

J. Goodman, Introduction to Fourier Optics (McGraw-Hill,1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scheme of Talbot interference lithography.
Fig. 2
Fig. 2 Simulation results for Talbot interference image using Eq. (3). Figure 2(a) is the binary mask; Fig. 2 (b) is the traditional Talbot image generated by one beam at normal incidence; Fig. 2(c) is the TIL image generated by superposing two coherent Talbot images; Fig. 2(d) is a zoom of one cell in 2(c).
Fig. 3
Fig. 3 Scheme of experiment setup for TIL using Lloyd mirror.
Fig. 4
Fig. 4 (a) SEM image of the print produced by Talbot interference. (b) Calculated and experimental profile in the photoresist. In dashed blue line the cross section of the experimental print. In solid red line the calculated print assuming a sigmoidal response for the photoresist. The periods of the calculated and experimental patterns are in good agreement.
Fig. 5
Fig. 5 Demonstration of the advantages of TI. Figure 5(a) is a Talbot mask composed of 6.5nm half pitch lines assembled in 65 × 65nm2 squares with 100nm periodicity; Fig. 5(b) is the calculated Talbot image at in th 3rd plane generated by one beam; Fig. 5(c) is the binary mask for TIL, composed of 65nm square holes with a period 100nm and 10nm radius of curvature corners; Fig. 5(d) is the TIL image at 6th Talbot plane, showing good contrast interference fringes with 13nm period.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E i ( x,y )= e jkz jλz T i ( ξ,η ) exp{ j k i 2z [ ( xξ ) 2 + ( yη ) 2 ] }dξdη
{ X phase = e 2πj λ ξcos θ ξ Y phase = e 2πj λ ηcos θ η
I( x,y )= E 1 2 ( x,y, z T )+ E 2 2 ( x,y, z T )+2 U 12 cos[ ( k 1 k 2 ) r ]

Metrics