Abstract

We investigate the athermal characteristics of silicon waveguides clad with TiO2 designed for 1.3 µm wavelength operation. Using CMOS-compatible fabrication processes, we realize and experimentally demonstrate silicon photonic ring resonators with resonant wavelengths that vary by less than 6 pm/°C at 1.3 µm. The measured ring resonance wavelengths across the 20-50°C temperature range show nearly complete cancellation of the first-order thermo-optical effects and exhibit second-order thermo-optical effects expected from the combination of TiO2 and Si.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide

Stevan S. Djordjevic, Kuanping Shang, Binbin Guan, Stanley T. S. Cheung, Ling Liao, Juthika Basak, Hai-Feng Liu, and S. J. B. Yoo
Opt. Express 21(12) 13958-13968 (2013)

Athermal silicon microring resonators with titanium oxide cladding

Biswajeet Guha, Jaime Cardenas, and Michal Lipson
Opt. Express 21(22) 26557-26563 (2013)

Polycrystalline anatase titanium dioxide microring resonators with negative thermo-optic coefficient

Orad Reshef, Katia Shtyrkova, Michael G. Moebius, Sarah Griesse-Nascimento, Steven Spector, Christopher C. Evans, Erich Ippen, and Eric Mazur
J. Opt. Soc. Am. B 32(11) 2288-2293 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  2. S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photonics Rev. 6(2), 145–177 (2012).
    [Crossref]
  3. K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).
    [Crossref] [PubMed]
  4. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33(1), 42–52 (2013).
    [Crossref]
  5. Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
    [Crossref]
  6. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010).
    [Crossref] [PubMed]
  7. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37(12), 2253–2255 (2012).
    [Crossref] [PubMed]
  8. L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21(17), 1175–1177 (2009).
    [Crossref]
  9. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [Crossref] [PubMed]
  10. V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18(17), 17631–17639 (2010).
    [Crossref] [PubMed]
  11. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
    [Crossref] [PubMed]
  12. K. Shang, S. S. Djordjevic, J. Li, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible titanium dioxide deposition for athermalization of silicon photonic waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2013), p. CF2I.5.
    [Crossref]
  13. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
    [Crossref] [PubMed]
  14. J. Bovington, R. Wu, K.-T. Cheng, and J. E. Bowers, “Thermal stress implications in athermal TiO2 waveguides on a silicon substrate,” Opt. Express 22(1), 661–666 (2014).
    [Crossref] [PubMed]
  15. V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A “soft electronic band” and the negative thermooptic effect in strontium titanate,” New J. Phys. 11(8), 083024 (2009).
    [Crossref]
  16. H.-H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310nm silicon evanescent laser,” Opt. Express 15(18), 11466–11471 (2007).
    [Crossref] [PubMed]
  17. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
    [Crossref]

2014 (2)

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

J. Bovington, R. Wu, K.-T. Cheng, and J. E. Bowers, “Thermal stress implications in athermal TiO2 waveguides on a silicon substrate,” Opt. Express 22(1), 661–666 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (3)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photonics Rev. 6(2), 145–177 (2012).
[Crossref]

B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37(12), 2253–2255 (2012).
[Crossref] [PubMed]

2010 (2)

2009 (3)

V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A “soft electronic band” and the negative thermooptic effect in strontium titanate,” New J. Phys. 11(8), 083024 (2009).
[Crossref]

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (1)

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Ackert, J. J.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

Basak, J.

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

K. Shang, S. S. Djordjevic, J. Li, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible titanium dioxide deposition for athermalization of silicon photonic waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2013), p. CF2I.5.
[Crossref]

Bergman, K.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

Bovington, J.

Bowers, J. E.

Cai, H.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photonics Rev. 6(2), 145–177 (2012).
[Crossref]

Cardenas, J.

Chang, H.-H.

Chen, H.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photonics Rev. 6(2), 145–177 (2012).
[Crossref]

Cheng, K.-T.

Cheung, S. T. S.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Cohen, O.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dejneka, A.

V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A “soft electronic band” and the negative thermooptic effect in strontium titanate,” New J. Phys. 11(8), 083024 (2009).
[Crossref]

Djordjevic, S. S.

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

K. Shang, S. S. Djordjevic, J. Li, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible titanium dioxide deposition for athermalization of silicon photonic waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2013), p. CF2I.5.
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

Fang, A. W.

Feng, S.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photonics Rev. 6(2), 145–177 (2012).
[Crossref]

Frey, B. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Guan, B.

Guha, B.

Han, X.

Hu, J.

Izuhara, T.

Jastrabik, L.

V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A “soft electronic band” and the negative thermooptic effect in strontium titanate,” New J. Phys. 11(8), 083024 (2009).
[Crossref]

Jian, X.

Jones, R.

Kimerling, L.

Knights, A. P.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Kyotoku, B. B. C.

Lei, T.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photonics Rev. 6(2), 145–177 (2012).
[Crossref]

Lentine, A. L.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33(1), 42–52 (2013).
[Crossref]

Leviton, D. B.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Li, J.

K. Shang, S. S. Djordjevic, J. Li, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible titanium dioxide deposition for athermalization of silicon photonic waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2013), p. CF2I.5.
[Crossref]

Li, Y.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

Liao, L.

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

K. Shang, S. S. Djordjevic, J. Li, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible titanium dioxide deposition for athermalization of silicon photonic waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2013), p. CF2I.5.
[Crossref]

Lipson, M.

Liu, H.-F.

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

K. Shang, S. S. Djordjevic, J. Li, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible titanium dioxide deposition for athermalization of silicon photonic waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2013), p. CF2I.5.
[Crossref]

Logan, D. F.

Luo, X.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photonics Rev. 6(2), 145–177 (2012).
[Crossref]

Lynnyk, A.

V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A “soft electronic band” and the negative thermooptic effect in strontium titanate,” New J. Phys. 11(8), 083024 (2009).
[Crossref]

Madison, T. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Markovin, P.

V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A “soft electronic band” and the negative thermooptic effect in strontium titanate,” New J. Phys. 11(8), 083024 (2009).
[Crossref]

Michel, J.

Morthier, G.

Okamoto, K.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

Padmaraju, K.

Paniccia, M. J.

Park, H.

Poon, A. W.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photonics Rev. 6(2), 145–177 (2012).
[Crossref]

Preston, K.

Raday, O.

Raghunathan, V.

Shang, K.

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

K. Shang, S. S. Djordjevic, J. Li, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible titanium dioxide deposition for athermalization of silicon photonic waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2013), p. CF2I.5.
[Crossref]

Sysak, M. N.

Teng, J.

Trepakov, V.

V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A “soft electronic band” and the negative thermooptic effect in strontium titanate,” New J. Phys. 11(8), 083024 (2009).
[Crossref]

Trotter, D. C.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33(1), 42–52 (2013).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Watts, M. R.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33(1), 42–52 (2013).
[Crossref]

Wu, R.

Ye, W. N.

Yoo, S. J. B.

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

K. Shang, S. S. Djordjevic, J. Li, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible titanium dioxide deposition for athermalization of silicon photonic waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2013), p. CF2I.5.
[Crossref]

Zhang, H.

Zhang, Y.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

Zhao, M.

Zhou, L.

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

Zhu, X.

Zortman, W. A.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33(1), 42–52 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136–149 (2014).
[Crossref]

IEEE Micro (1)

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33(1), 42–52 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. Zhou, K. Okamoto, and S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding,” IEEE Photonics Technol. Lett. 21(17), 1175–1177 (2009).
[Crossref]

Laser Photonics Rev. (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photonics Rev. 6(2), 145–177 (2012).
[Crossref]

New J. Phys. (1)

V. Trepakov, A. Dejneka, P. Markovin, A. Lynnyk, and L. Jastrabik, “A “soft electronic band” and the negative thermooptic effect in strontium titanate,” New J. Phys. 11(8), 083024 (2009).
[Crossref]

Opt. Express (8)

H.-H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310nm silicon evanescent laser,” Opt. Express 15(18), 11466–11471 (2007).
[Crossref] [PubMed]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
[Crossref] [PubMed]

J. Bovington, R. Wu, K.-T. Cheng, and J. E. Bowers, “Thermal stress implications in athermal TiO2 waveguides on a silicon substrate,” Opt. Express 22(1), 661–666 (2014).
[Crossref] [PubMed]

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21(12), 14342–14350 (2013).
[Crossref] [PubMed]

B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010).
[Crossref] [PubMed]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18(17), 17631–17639 (2010).
[Crossref] [PubMed]

S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. SPIE (1)

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006).
[Crossref]

Other (1)

K. Shang, S. S. Djordjevic, J. Li, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible titanium dioxide deposition for athermalization of silicon photonic waveguides,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2013), p. CF2I.5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) A cross-sectional schematic of athermal Si-TiO2 waveguide. (b) Calculated dneff/dT as a function of the waveguide width for different refractive index values of TiO2 cladding for 1310 nm operation.
Fig. 2
Fig. 2 Fabrication process steps: (a) Initial SOI wafer. (b) SiN hard mask deposition. (c) Waveguide layer patterning. (d) Thermal oxidation to reduce waveguide width. (e) SiN and thermal SiO2 strip. (f) SiO2 layer deposition. (g) Trench opening for TiO2 cladding. (h) Deep etch for waveguide edge coupler. (i) TiO2 cladding deposition.
Fig. 3
Fig. 3 Waveguide geometries. (a) Top-view SEM image of a ring resonator before TiO2 cladding deposition; (b) Ring-to-bus waveguide coupling region; (c) Cross-sectional SEM image of a waveguide before TiO2 cladding deposition; (d) Top-view SEM image of an inverse taper.
Fig. 4
Fig. 4 (a) – (b) Measured transmission spectra at various temperature of the devices with (a) SiO2 and (b) TiO2 over cladding. (c) Resonance wavelength λr as a function of temperature for the devices of 200nm width with SiO2 and TiO2 cladding.
Fig. 5
Fig. 5 (a) – (c) Measured (black circle) and quadratically fitted (red line) resonance wavelength shift as a function of temperature. The device with a waveguide width of 200nm is measured at various spectral ranges around (a) 1270nm, (b) 1310nm and (c) 1340nm. (d) Temperature-dependent wavelength shift dλr/dT at T = 35°C as a function of wavelength. Black square: extracted dλr/dT from the measurement result. Red line: linear fitted dλr/dT at T = 35°C as a function of wavelength.
Fig. 6
Fig. 6 (a) Measured transmission spectra at various temperature of the devices with 200nm and 220nm widths. (b) Measured resonance wavelength λr as a function of temperature for the devices with 200nm and 220nm widths.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d n eff dT = k d( Γ k n k ) dT = k [ n k d( Γ k ) dT + Γ k d( n k ) dT ] k Γ k d n k dT = Γ Si d n Si dT + Γ Si O 2 d n Si O 2 dT + Γ Ti O 2 d n Ti O 2 dT
dn/dT=β+γT
m λ r =2π n eff ( λ r ,T)R(T)
d λ r dT = n eff λ r n g R dR dT + λ r n g d n eff dT λ r n g ( n eff α sub + d n eff dT )
d n eff dT = k d( Γ k n k ) dT = k [ n k d( Γ k ) dT + Γ k d( n k ) dT ] k Γ k d n k /dT = k Γ k ( β k + γ k T )

Metrics