Abstract

A Mach-Zehnder Interferometer (MZI) liquid sensor, employing ultra-compact double-slot hybrid plasmonic (DSHP) waveguide as active sensing arm, is developed. Numerical results show that extremely large optical confinement factor of the tested analytes (as high as 88%) can be obtained by DSHP waveguide with optimized geometrical parameters, which is larger than both, conventional SOI waveguides and plasmonic slot waveguides with same widths. As for MZI sensor with 40μm long DSHP active sensing area, the sensitivity can reach as high value as 1061nm/RIU (refractive index unit). The total loss, excluding the coupling loss of the grating coupler, is around 4.5dB.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Protein analysis by Mach-Zehnder interferometers with a hybrid plasmonic waveguide with nano-slots

Chen Chen, Xun Hou, and Jinhai Si
Opt. Express 25(25) 31294-31308 (2017)

Low-loss hybrid plasmonic waveguide with double low-index nano-slots

Daoxin Dai and Sailing He
Opt. Express 18(17) 17958-17966 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
    [Crossref] [PubMed]
  2. J. Wang and D. Dai, “Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring,” Opt. Lett. 35(24), 4229–4231 (2010).
    [PubMed]
  3. Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. Yoon, G. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
    [Crossref]
  4. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguesz, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
    [Crossref]
  5. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
    [Crossref]
  6. J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
    [Crossref] [PubMed]
  7. L. Jin, M. Li, and J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
    [Crossref]
  8. H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 87(1), 011105 (2010).
  9. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide device,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
    [Crossref]
  10. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
    [Crossref] [PubMed]
  11. F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, A. Otomo, I. Aoki, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 8561 (2015).
  12. G. D. Osowiecki, E. Barakat, A. Naqavi, and H. P. Herzig, “Vertically coupled plasmonic slot waveguide cavity for localized biosensing applications,” Opt. Express 22(17), 20871–20880 (2014).
    [Crossref] [PubMed]
  13. M. Z.Alam, J. Meier, J. S. Aitchison, and M.Mojahedi, “Super mode propagation in Low Index Medium,” in CLEO/QELS (OSA, 2007), paper JThD112.
  14. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  15. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011).
    [Crossref] [PubMed]
  16. F. Lou, D. Dai, L. Thylen, and L. Wosinski, “Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators,” Opt. Express 21(17), 20041–20051 (2013).
    [Crossref] [PubMed]
  17. F. Lou, L. Thylen, and L. Wosinski, “Ultra-sharp Bends Based on Hybrid Plasmonic Waveguides”, 40th European Conference ECOC, Cannes, France, Sept. 21–25, 2014.
    [Crossref]
  18. D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010).
    [Crossref] [PubMed]
  19. S. Choi and J. T. Kim, “Vertical coupling characteristics between hybrid plasmonic slot waveguide and Si waveguide,” Opt. Commun. 285(18), 3735–3739 (2012).
    [Crossref]
  20. L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic bragg grating reflector,” IEEE Photonics Technol. Lett. 24(19), 1765–1767 (2012).
    [Crossref]
  21. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particle, (Wiley, 1983), Chap. 9.
  22. D. R. Lide, ed., Handbook of Chemistry and Physics, (CRC, 2008), Chap. 8.
  23. O. Parriaux and G. J. Veldhuis, “Normalized Analysis for the Sensitivity Optimization of Integrated Optical Evanescent-Wave Sensors,” J. Lightwave Technol. 16(4), 573–582 (1998).
    [Crossref]
  24. Y. Tang, Z. Wang, L. Wosinski, U. Westergren, and S. He, “Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits,” Opt. Lett. 35(8), 1290–1292 (2010).
    [Crossref] [PubMed]
  25. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007).
    [Crossref] [PubMed]

2015 (1)

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, A. Otomo, I. Aoki, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 8561 (2015).

2014 (2)

2013 (2)

F. Lou, D. Dai, L. Thylen, and L. Wosinski, “Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators,” Opt. Express 21(17), 20041–20051 (2013).
[Crossref] [PubMed]

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. Yoon, G. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

2012 (2)

S. Choi and J. T. Kim, “Vertical coupling characteristics between hybrid plasmonic slot waveguide and Si waveguide,” Opt. Commun. 285(18), 3735–3739 (2012).
[Crossref]

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic bragg grating reflector,” IEEE Photonics Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

2011 (2)

L. Jin, M. Li, and J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011).
[Crossref] [PubMed]

2010 (4)

2008 (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

2007 (1)

2006 (3)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide device,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguesz, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

1998 (1)

Abad, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguesz, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Almeida, V. R.

Alonso-Ramos, C.

Aoki, I.

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, A. Otomo, I. Aoki, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 8561 (2015).

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide device,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

Balslev, S.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[Crossref] [PubMed]

Barakat, E.

Bilenberg, B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[Crossref] [PubMed]

Calle, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguesz, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Cheben, P.

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Choi, S.

S. Choi and J. T. Kim, “Vertical coupling characteristics between hybrid plasmonic slot waveguide and Si waveguide,” Opt. Commun. 285(18), 3735–3739 (2012).
[Crossref]

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide device,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

Dai, D.

Delge, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Dell’Olio, F.

Densmore, A.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Domynguesz, C.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguesz, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Fan, X.

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 87(1), 011105 (2010).

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Geschke, O.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[Crossref] [PubMed]

Gonzalo Wangüemert-Pérez, J.

Halir, R.

Han, K.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. Yoon, G. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

He, J.

L. Jin, M. Li, and J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

He, S.

Herzig, H. P.

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide device,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

Janz, S.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Jin, L.

L. Jin, M. Li, and J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Jorgensen, A. M.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[Crossref] [PubMed]

Kee, J. S.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. Yoon, G. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Kim, J. T.

S. Choi and J. T. Kim, “Vertical coupling characteristics between hybrid plasmonic slot waveguide and Si waveguide,” Opt. Commun. 285(18), 3735–3739 (2012).
[Crossref]

Kim, K. W.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. Yoon, G. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Kristensen, A.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[Crossref] [PubMed]

Kutter, J. P.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[Crossref] [PubMed]

Lamontagne, B.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Lapointe, J.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Lechuga, L. M.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguesz, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Li, F.

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic bragg grating reflector,” IEEE Photonics Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Li, H.

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 87(1), 011105 (2010).

Li, M.

L. Jin, M. Li, and J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

Lipson, M.

Liu, Q.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. Yoon, G. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Llobera, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguesz, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Lo, G.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. Yoon, G. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Lou, F.

Lu, L.

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic bragg grating reflector,” IEEE Photonics Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Maeda, D.

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, A. Otomo, I. Aoki, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 8561 (2015).

Mogensen, K. B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[Crossref] [PubMed]

Molina-Fernández, I.

Montoya, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguesz, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Naqavi, A.

Odoi, K.

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, A. Otomo, I. Aoki, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 8561 (2015).

Ortega-Moñux, A.

Osowiecki, G. D.

Otomo, A.

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, A. Otomo, I. Aoki, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 8561 (2015).

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Ozawa, M.

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, A. Otomo, I. Aoki, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 8561 (2015).

Panepucci, R. R.

Park, M. K.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. Yoon, G. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Parriaux, O.

Passaro, V. M. N.

Pérez-Galacho, D.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Post, E.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Prieto, F.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguesz, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Qiu, F.

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, A. Otomo, I. Aoki, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 8561 (2015).

Schmid, J. H.

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Sepulveda, B.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguesz, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Shi, Y.

Shin, Y.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. Yoon, G. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Snakenborg, D.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Spring, A. M.

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, A. Otomo, I. Aoki, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 8561 (2015).

Su, Y.

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic bragg grating reflector,” IEEE Photonics Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Tang, Y.

Thylen, L.

Tu, X.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. Yoon, G. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Veldhuis, G. J.

Waldron, P.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Wang, J.

Wang, T.

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic bragg grating reflector,” IEEE Photonics Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Wang, Z.

Westergren, U.

Wosinski, L.

Wu, J.

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic bragg grating reflector,” IEEE Photonics Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Xu, D. X.

Xu, D.-X.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

Xu, M.

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic bragg grating reflector,” IEEE Photonics Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Xu, Q.

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide device,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

Yokoyama, S.

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, A. Otomo, I. Aoki, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 8561 (2015).

Yoon, Y.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. Yoon, G. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhou, L.

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic bragg grating reflector,” IEEE Photonics Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Appl. Phys. Lett. (1)

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 87(1), 011105 (2010).

IEEE J. Sel. Top. Quantum Electron. (1)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide device,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photonics Technol. Lett. 18(23), 2520–2522 (2006).
[Crossref]

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic bragg grating reflector,” IEEE Photonics Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

J. Lightwave Technol. (1)

Lab Chip (1)

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[Crossref] [PubMed]

Nanotechnology (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domynguesz, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003).
[Crossref]

Nat. Photonics (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Opt. Commun. (2)

L. Jin, M. Li, and J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Opt. Commun. 284(1), 156–159 (2011).
[Crossref]

S. Choi and J. T. Kim, “Vertical coupling characteristics between hybrid plasmonic slot waveguide and Si waveguide,” Opt. Commun. 285(18), 3735–3739 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Sci. Rep. (1)

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, A. Otomo, I. Aoki, and S. Yokoyama, “A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator,” Sci. Rep. 5, 8561 (2015).

Sens. Actuators B Chem. (1)

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. Yoon, G. Lo, and M. K. Park, “Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Sens. Actuators B Chem. 188, 681–688 (2013).
[Crossref]

Other (4)

F. Lou, L. Thylen, and L. Wosinski, “Ultra-sharp Bends Based on Hybrid Plasmonic Waveguides”, 40th European Conference ECOC, Cannes, France, Sept. 21–25, 2014.
[Crossref]

M. Z.Alam, J. Meier, J. S. Aitchison, and M.Mojahedi, “Super mode propagation in Low Index Medium,” in CLEO/QELS (OSA, 2007), paper JThD112.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particle, (Wiley, 1983), Chap. 9.

D. R. Lide, ed., Handbook of Chemistry and Physics, (CRC, 2008), Chap. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the double-slot hybrid plasmonic (DSHP) waveguide coupled to SOI waveguides at both ends. (b) Cross-section view of the DSHP waveguide covered by test liquid. The widths of Si ridge and slots are denoted as wSi and wslot, respectively. The silver pads and Si ridge have identical height hWG. (c) Mode profile of the DSHP waveguide, where wslot = 150nm, wSi = 165nm and hWG = 250nm. The covering material is 100% 2-propanol (IPA).
Fig. 2
Fig. 2 Performances (effective refractive index, loss and confinement factors) of double-slot hybrid plasmonic waveguides for different widths of Si ridge and slot. (a) Effective refractive index (neff) changed with slot width (wslot). (b) Loss in the units of dB/μm versus wslot. (c) and (d) Confinement factors in covering IPA and Si with different wslot.
Fig. 3
Fig. 3 (a), (b) and (c) mode profiles of 300nm wide DSHP waveguide with Si width ratio (q) of 0, 0.5 and 1, respectively. (d) and (e) neff and loss (dB/μm) versus q factor. (f), (g) and (h) confinement factors in covering 2-propanol (ΓIPA), slot (Γslot) and Si ridge (ΓSi) with different q factors. neff and Γ values are given for widths of DSHP waveguide w from 200nm to 700nm with a step of 100nm.
Fig. 4
Fig. 4 Characterization setup and schematic of the Mach-Zehnder Interferometer employing double-slot hybrid plasmonic waveguide as a sensing arm. Two grating couplers are fabricated at each end of the device, which are used for coupling light from/to optical fiber. The sub-figure shows the details of the sensing area, which contains taper designs for both Ag pads and Si ridge.
Fig. 5
Fig. 5 SEM top view of fabricated device with added monochrome color to enhance contrast. The sub-figure is the close-view of the double-slot hybrid plasmonic waveguide. The widths of Si ridge and slots are 165nm and 150nm, respectively. The white bright elements with tapers are Ag pads (wAg = 1µm).
Fig. 6
Fig. 6 (a) Output power of the DSHP MZI sensor. The reference level (green) is the transmission response of the straight waveguide with input/output grating couplers, which is normalized to 0dB. The black and red dashed curves are measured results when the sensor is infiltrated with 100% 2-propanol and 60% 2-propanol, respectively. Solid curves are sinusoidal fitting curves according to the measured results. (b) Normalized output power of the MZI sensor with 30μm long DSHP waveguide for different IPA concentrations.
Fig. 7
Fig. 7 (a), (b) and (c) wavelength shifts with 100% IPA and 60% IPA for different lengths (20μm, 30μm and 40μm) of the double-slot hybrid plasmonic (DSHP) waveguide sensing area. (d) wavelength shift versus refractive index of test liquids, linear fittings are used to calculate the sensitivity of MZI sensors.

Tables (1)

Tables Icon

Table 1 Refractive indices of aqueous solution of 2-propanol [22]

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε= ε ω p 2 ω 2 +jωγ
Γ= area | E(x,y) | 2 dxdy / | E(x,y) | 2 dxdy ,
Δ l eff = n eff,ref (2π r ref + L ref 2 L in )2 L taper n eff,taper (l) dl2 L ridge n eff,ridge (l) dl n eff,DSHP L DSHP ,
S= λ res n liquid = λ res n eff n eff n liquid ,

Metrics