Abstract

In this paper we introduce a low-stress silicon enriched nitride platform that has potential for nonlinear and highly integrated optics. The manufacturing process of this platform is CMOS compatible and the increased silicon content allows tensile stress reduction and crack free layer growth of 700 nm. Additional benefits of the silicon enriched nitride is a measured nonlinear Kerr coefficient n2 of 1.4·10−18 m2/W (5 times higher than stoichiometric silicon nitride) and a refractive index of 2.1 at 1550 nm that enables high optical field confinement allowing high intensity nonlinear optics and light guidance even with small bending radii. We analyze the waveguide loss (∼1 dB/cm) in a spectrally resolved fashion and include scattering loss simulations based on waveguide surface roughness measurements. Detailed simulations show the possibility for fine dispersion and nonlinear engineering. In nonlinear experiments we present continuous-wave wavelength conversion and demonstrate that the material does not show nonlinear absorption effects. Finally, we demonstrate microfabrication of resonators with high Q-factors (∼105).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon-rich nitride waveguides for ultra-broadband nonlinear signal processing

Mohammad Rezagholipour Dizaji, Clemens J. Krückel, Attila Fülöp, Peter A. Andrekson, Victor Torres-Company, and Lawrence R. Chen
Opt. Express 25(11) 12100-12108 (2017)

High confinement, high yield Si3N4 waveguides for nonlinear optical applications

Jörn P. Epping, Marcel Hoekman, Richard Mateman, Arne Leinse, René G. Heideman, Albert van Rees, Peter J.M. van der Slot, Chris J. Lee, and Klaus-J. Boller
Opt. Express 23(2) 642-648 (2015)

Photonic crystal waveguides on silicon rich nitride platform

Kapil Debnath, Thalia Dominguez Bucio, Abdelrahman Al-Attili, Ali Z. Khokhar, Shinichi Saito, and Frederic Y. Gardes
Opt. Express 25(4) 3214-3221 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
    [Crossref]
  2. W. D. Sacher, Y. Huang, G. -Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33(4), 901–910 (2015).
    [Crossref]
  3. M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/Silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
    [Crossref]
  4. R. Heiderman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
    [Crossref]
  5. M. Boerkamp, T. van Leest, J. Heldens, A. Leinse, M. Hoekman, R. Heiderman, and J. Caro, “On-chip optical trapping and Raman spectroscopy using a TripleX dual-waveguide trap,” Opt. Express 22(25), 30528–30537 (2014).
    [Crossref]
  6. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heiderman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
    [Crossref] [PubMed]
  7. J. F. Bauters, J. R. Adleman, M. J. R. Heck, and J. E. Bowers, “Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides,” Appl. Phys. A 116(2), 427–432 (2014).
    [Crossref]
  8. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153–157 (2014).
    [Crossref]
  9. M. Chavez-Boggio, D. Bodenmuller, T. Fremberg, R. Haynes, M. M. Roth, R. Eisermann, M. Lisker, L. Zimmermann, and M. Bohm, “Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization,” J. Opt. Soc. Am. B 31(11), 2846–2857 (2014).
    [Crossref]
  10. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Photon. 7(8), 597–607 (2013).
    [Crossref]
  11. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
    [Crossref] [PubMed]
  12. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon. 4(1), 37–40 (2010).
    [Crossref]
  13. F. Ferdous, H. X. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photon. 5(12), 770–776 (2011).
    [Crossref]
  14. T. Herr, K. Hartinger, J. Riemensberger, C. Y Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nature Photon. 6(7), 480–487 (2012).
    [Crossref]
  15. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [Crossref] [PubMed]
  16. J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, and K. -J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23(2), 642–648 (2015).
    [Crossref] [PubMed]
  17. K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21(19), 22829–22833 (2013).
    [Crossref] [PubMed]
  18. M. -C. Cheng, C. -P. Chang, W. -S. Huang, and R. -S. Huang, “Ultralow stress silicon rich nitride films for microstructure fabrication,” Sens. Mater. 11(6), 349–358 (1999).
  19. T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express 12(7), 1437–1442 (2004).
    [Crossref] [PubMed]
  20. H. T. Philipp, K. N. Andersen, W. Svendsen, and H. Ou, “Amorphous silicon rich nitride optical waveguides for high density integrated optics,” Electron. Lett. 40(7), 419–421 (2004).
    [Crossref]
  21. C. Krückel, A. Fülöp, P. Andrekson, and V. Torres-Company, “Continuous-wave nonlinear optics in low-stress silicon-rich nitride waveguides,” in Proceedings of the Conferebce ib Optical Fiber Communications (2015), paper W1K.4.
  22. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref] [PubMed]
  23. J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEEE Proceedings J. 137(4), 282–288 (1990).
  24. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
    [Crossref]
  25. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
    [Crossref]
  26. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
    [Crossref]
  27. J. P. R. Lacey and F. P. Payne, “Optical Properties, Band Gap, and Surface Roughness of Si3N4,” Phys. Stat. Solidi (A) 39(2), 411–418 (1977).
    [Crossref]
  28. V. P. Tzolov and M. Fontaine, “Nonlinear self-phase-modulation effects: a vectorial first-order perturbation approach,” Opt. Lett. 20(5), 456–458 (1995).
    [Crossref] [PubMed]
  29. A. Boskovic, S. V. Chernikov, and J. R. Taylor, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm,” Opt. Lett. 21(24), 1966–1968 (1996).
    [Crossref] [PubMed]
  30. M. -C. Tien, J. F. Bauters, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability,” Opt. Express 18(23), 23562–23568 (2010).
    [Crossref] [PubMed]

2015 (2)

2014 (6)

2013 (2)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Photon. 7(8), 597–607 (2013).
[Crossref]

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21(19), 22829–22833 (2013).
[Crossref] [PubMed]

2012 (3)

T. Herr, K. Hartinger, J. Riemensberger, C. Y Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nature Photon. 6(7), 480–487 (2012).
[Crossref]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
[Crossref] [PubMed]

R. Heiderman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

2011 (2)

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heiderman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

F. Ferdous, H. X. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photon. 5(12), 770–776 (2011).
[Crossref]

2010 (2)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon. 4(1), 37–40 (2010).
[Crossref]

M. -C. Tien, J. F. Bauters, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability,” Opt. Express 18(23), 23562–23568 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (1)

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

2004 (2)

T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express 12(7), 1437–1442 (2004).
[Crossref] [PubMed]

H. T. Philipp, K. N. Andersen, W. Svendsen, and H. Ou, “Amorphous silicon rich nitride optical waveguides for high density integrated optics,” Electron. Lett. 40(7), 419–421 (2004).
[Crossref]

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

1999 (1)

M. -C. Cheng, C. -P. Chang, W. -S. Huang, and R. -S. Huang, “Ultralow stress silicon rich nitride films for microstructure fabrication,” Sens. Mater. 11(6), 349–358 (1999).

1996 (2)

A. Boskovic, S. V. Chernikov, and J. R. Taylor, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm,” Opt. Lett. 21(24), 1966–1968 (1996).
[Crossref] [PubMed]

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

1995 (1)

1990 (1)

J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEEE Proceedings J. 137(4), 282–288 (1990).

1977 (1)

J. P. R. Lacey and F. P. Payne, “Optical Properties, Band Gap, and Surface Roughness of Si3N4,” Phys. Stat. Solidi (A) 39(2), 411–418 (1977).
[Crossref]

Adleman, J. R.

J. F. Bauters, J. R. Adleman, M. J. R. Heck, and J. E. Bowers, “Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides,” Appl. Phys. A 116(2), 427–432 (2014).
[Crossref]

Alic, N.

Andersen, K. N.

H. T. Philipp, K. N. Andersen, W. Svendsen, and H. Ou, “Amorphous silicon rich nitride optical waveguides for high density integrated optics,” Electron. Lett. 40(7), 419–421 (2004).
[Crossref]

Andrekson, P.

C. Krückel, A. Fülöp, P. Andrekson, and V. Torres-Company, “Continuous-wave nonlinear optics in low-stress silicon-rich nitride waveguides,” in Proceedings of the Conferebce ib Optical Fiber Communications (2015), paper W1K.4.

Barton, J. S.

Barwicz, T.

Bauters, J. F.

Blumenthal, D. J.

Bodenmuller, D.

Boerkamp, M.

Bohm, M.

Boller, K. -J.

Boskovic, A.

Bowers, J. E.

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

Bruinink, C. M.

Caro, J.

Chang, C. -P.

M. -C. Cheng, C. -P. Chang, W. -S. Huang, and R. -S. Huang, “Ultralow stress silicon rich nitride films for microstructure fabrication,” Sens. Mater. 11(6), 349–358 (1999).

Chavez-Boggio, M.

Chen, L.

F. Ferdous, H. X. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photon. 5(12), 770–776 (2011).
[Crossref]

Cheng, M. -C.

M. -C. Cheng, C. -P. Chang, W. -S. Huang, and R. -S. Huang, “Ultralow stress silicon rich nitride films for microstructure fabrication,” Sens. Mater. 11(6), 349–358 (1999).

Chernikov, S. V.

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/Silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
[Crossref]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Dutt, A.

Eisermann, R.

Epping, J. P.

Fainman, Y.

Ferdous, F.

F. Ferdous, H. X. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photon. 5(12), 770–776 (2011).
[Crossref]

Fontaine, M.

Foster, M. A.

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon. 4(1), 37–40 (2010).
[Crossref]

Fremberg, T.

Fülöp, A.

C. Krückel, A. Fülöp, P. Andrekson, and V. Torres-Company, “Continuous-wave nonlinear optics in low-stress silicon-rich nitride waveguides,” in Proceedings of the Conferebce ib Optical Fiber Communications (2015), paper W1K.4.

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Photon. 7(8), 597–607 (2013).
[Crossref]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon. 4(1), 37–40 (2010).
[Crossref]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Y Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nature Photon. 6(7), 480–487 (2012).
[Crossref]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon. 4(1), 37–40 (2010).
[Crossref]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[Crossref] [PubMed]

Gorodetsky, M. L.

T. Herr, K. Hartinger, J. Riemensberger, C. Y Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nature Photon. 6(7), 480–487 (2012).
[Crossref]

Halir, R.

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Y Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nature Photon. 6(7), 480–487 (2012).
[Crossref]

Haus, H. A.

Haynes, R.

Heck, M. J. R.

Heideman, R. G.

Heiderman, R.

M. Boerkamp, T. van Leest, J. Heldens, A. Leinse, M. Hoekman, R. Heiderman, and J. Caro, “On-chip optical trapping and Raman spectroscopy using a TripleX dual-waveguide trap,” Opt. Express 22(25), 30528–30537 (2014).
[Crossref]

R. Heiderman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

Heiderman, R. G.

Heldens, J.

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Y Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nature Photon. 6(7), 480–487 (2012).
[Crossref]

Hoekman, M.

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Y Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nature Photon. 6(7), 480–487 (2012).
[Crossref]

Huang, R. -S.

M. -C. Cheng, C. -P. Chang, W. -S. Huang, and R. -S. Huang, “Ultralow stress silicon rich nitride films for microstructure fabrication,” Sens. Mater. 11(6), 349–358 (1999).

Huang, W. -S.

M. -C. Cheng, C. -P. Chang, W. -S. Huang, and R. -S. Huang, “Ultralow stress silicon rich nitride films for microstructure fabrication,” Sens. Mater. 11(6), 349–358 (1999).

Huang, Y.

Ikeda, K.

Ippen, E. P.

Jellison, G. E.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

John, D. D.

Kippenberg, T. J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nature Photon. 6(7), 480–487 (2012).
[Crossref]

Krückel, C.

C. Krückel, A. Fülöp, P. Andrekson, and V. Torres-Company, “Continuous-wave nonlinear optics in low-stress silicon-rich nitride waveguides,” in Proceedings of the Conferebce ib Optical Fiber Communications (2015), paper W1K.4.

Lacey, J. P. R.

J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEEE Proceedings J. 137(4), 282–288 (1990).

J. P. R. Lacey and F. P. Payne, “Optical Properties, Band Gap, and Surface Roughness of Si3N4,” Phys. Stat. Solidi (A) 39(2), 411–418 (1977).
[Crossref]

Leaird, D. E.

F. Ferdous, H. X. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photon. 5(12), 770–776 (2011).
[Crossref]

Lee, C. J.

Leinse, A.

Levy, J. S.

Lipson, M.

Lisker, M.

Lo, G. -Q.

Luke, K.

Mateman, R.

Miao, H. X.

F. Ferdous, H. X. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photon. 5(12), 770–776 (2011).
[Crossref]

Modine, F. A.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Photon. 7(8), 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Photon. 7(8), 597–607 (2013).
[Crossref]

Okawachi, Y.

Ou, H.

H. T. Philipp, K. N. Andersen, W. Svendsen, and H. Ou, “Amorphous silicon rich nitride optical waveguides for high density integrated optics,” Electron. Lett. 40(7), 419–421 (2004).
[Crossref]

Payne, F. P.

J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEEE Proceedings J. 137(4), 282–288 (1990).

J. P. R. Lacey and F. P. Payne, “Optical Properties, Band Gap, and Surface Roughness of Si3N4,” Phys. Stat. Solidi (A) 39(2), 411–418 (1977).
[Crossref]

Philipp, H. T.

H. T. Philipp, K. N. Andersen, W. Svendsen, and H. Ou, “Amorphous silicon rich nitride optical waveguides for high density integrated optics,” Electron. Lett. 40(7), 419–421 (2004).
[Crossref]

Piels, M.

Poitras, C. B.

Poon, J. K. S.

Popovic, M. A.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Rakich, P. T.

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nature Photon. 6(7), 480–487 (2012).
[Crossref]

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

Roth, M. M.

Sacher, W. D.

Saperstein, R. E.

Schreuder, E.

R. Heiderman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

Smith, H. I.

Spencer, D. T.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1(3), 153–157 (2014).
[Crossref]

Srinivasan, K.

F. Ferdous, H. X. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photon. 5(12), 770–776 (2011).
[Crossref]

Svendsen, W.

H. T. Philipp, K. N. Andersen, W. Svendsen, and H. Ou, “Amorphous silicon rich nitride optical waveguides for high density integrated optics,” Electron. Lett. 40(7), 419–421 (2004).
[Crossref]

Taylor, J. R.

Tien, M. -C.

Torres-Company, V.

C. Krückel, A. Fülöp, P. Andrekson, and V. Torres-Company, “Continuous-wave nonlinear optics in low-stress silicon-rich nitride waveguides,” in Proceedings of the Conferebce ib Optical Fiber Communications (2015), paper W1K.4.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon. 4(1), 37–40 (2010).
[Crossref]

Tzolov, V. P.

van der Slot, P. J. M.

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

van Leest, T.

van Rees, A.

Varghese, L. T.

F. Ferdous, H. X. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photon. 5(12), 770–776 (2011).
[Crossref]

Wang, C. Y

T. Herr, K. Hartinger, J. Riemensberger, C. Y Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nature Photon. 6(7), 480–487 (2012).
[Crossref]

Wang, J.

F. Ferdous, H. X. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photon. 5(12), 770–776 (2011).
[Crossref]

Watts, M. R.

Weiner, A. M.

F. Ferdous, H. X. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photon. 5(12), 770–776 (2011).
[Crossref]

Zimmermann, L.

Appl. Phys. A (1)

J. F. Bauters, J. R. Adleman, M. J. R. Heck, and J. E. Bowers, “Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides,” Appl. Phys. A 116(2), 427–432 (2014).
[Crossref]

Appl. Phys. Lett. (3)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[Crossref]

Electron. Lett. (1)

H. T. Philipp, K. N. Andersen, W. Svendsen, and H. Ou, “Amorphous silicon rich nitride optical waveguides for high density integrated optics,” Electron. Lett. 40(7), 419–421 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Heiderman, M. Hoekman, and E. Schreuder, “TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron. 18(5), 1583–1596 (2012).
[Crossref]

IEEE Proceedings J. (1)

J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEEE Proceedings J. 137(4), 282–288 (1990).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

Nature Photon. (4)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon. 4(1), 37–40 (2010).
[Crossref]

F. Ferdous, H. X. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nature Photon. 5(12), 770–776 (2011).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nature Photon. 6(7), 480–487 (2012).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nature Photon. 7(8), 597–607 (2013).
[Crossref]

Opt. Express (8)

M. Boerkamp, T. van Leest, J. Heldens, A. Leinse, M. Hoekman, R. Heiderman, and J. Caro, “On-chip optical trapping and Raman spectroscopy using a TripleX dual-waveguide trap,” Opt. Express 22(25), 30528–30537 (2014).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heiderman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[Crossref] [PubMed]

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, and K. -J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23(2), 642–648 (2015).
[Crossref] [PubMed]

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express 21(19), 22829–22833 (2013).
[Crossref] [PubMed]

T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express 12(7), 1437–1442 (2004).
[Crossref] [PubMed]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[Crossref] [PubMed]

M. -C. Tien, J. F. Bauters, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability,” Opt. Express 18(23), 23562–23568 (2010).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (1)

Phys. Stat. Solidi (A) (1)

J. P. R. Lacey and F. P. Payne, “Optical Properties, Band Gap, and Surface Roughness of Si3N4,” Phys. Stat. Solidi (A) 39(2), 411–418 (1977).
[Crossref]

Sens. Mater. (1)

M. -C. Cheng, C. -P. Chang, W. -S. Huang, and R. -S. Huang, “Ultralow stress silicon rich nitride films for microstructure fabrication,” Sens. Mater. 11(6), 349–358 (1999).

Other (1)

C. Krückel, A. Fülöp, P. Andrekson, and V. Torres-Company, “Continuous-wave nonlinear optics in low-stress silicon-rich nitride waveguides,” in Proceedings of the Conferebce ib Optical Fiber Communications (2015), paper W1K.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of fabrication process for silicon-enriched nitride waveguides. Only the processing of the top part of the wafer is presented. (I) Silicon wafer as initial condition. (II) Thermal wet oxidation of 2 μm SiO2. (III) LPCVD deposition of 700 nm silicon-rich nitride in a gas mixture of NH3 and SiH2Cl2. (IV) Patterning of the photoresist based etching mask by DUV lithography. (V) Dry etching of SixNy in CHF3 and O2 and remaining etch mask removal. (VI) PECVD deposition of 2 μm SiO2 in SiH4 and N2O. (b) SEM picture of patterned SixNy strip after etching. Magnification of 70 000. (c) Experimental results of spectrally resolved waveguide loss and coupling loss in SixNy waveguide (700 nm height, 1.65 μm width). The dark lines show the mean value, the bright shadowed areas the standard deviation and the brown curve shows the propagation loss for one sample waveguide, (see details in the text).
Fig. 2
Fig. 2 (a) SEM picture of the coupling region between the bus waveguide and the microring resonator at a magnification of 25 000. The inset shows the indicated rectangular area for the analysis of sidewall roughness, with the SEM image intensity converted to color code. The black line going from top to bottom is the identified edge of the waveguide wall used to extract the roughness parameters. (b) Atomic force microscopy picture of the SixNy surface.
Fig. 3
Fig. 3 (a) Simulation of power distribution of the fundamental TE-mode at 1550 nm wavelength. (b) Simulation of dispersion D as a function of waveguide height and waveguide width of the fundamental TE-mode at 1550 nm wavelength. The dot indicates the waveguide dimensions used in this publication. (c) Simulation of nonlinear parameter γ as a function of waveguide height and waveguide width of the fundamental TE-mode at 1550 nm wavelength. The dot indicates the waveguide dimensions used in this work and the black curve indicates the zero dispersion of the waveguide.
Fig. 4
Fig. 4 (a) Schematic of experimental setup for four-wave mixing experiments. Continuous wave (CW) tunable laser. Polarization controller (PC). Erbium doped fiber amplifier (EDFA). Optical bandpass filter (OBF). Wavelength-division multiplexing (WDM) coupler. (b) Outcoupled conversion efficiency as a function of launched pump power into the waveguide. (c) Outcoupled conversion efficiency as a function of wavelength separation between signal and pump wave. (d) Nonlinear phase shift φSPM as a function of coupled pump power.
Fig. 5
Fig. 5 (a) SEM picture of microring resonator with 20 μm bending radius at a magnification 7 000. (b) Wavelength dependent transmission spectrum of a 20 μm radius microring resonator system. (c) High-resolution scan of microring resonance at ∼1617.4 nm. The quality factor is ∼150 000. (d) Q-factor evaluation of resonances from 1520 to 1620 nm wavelengths.

Tables (1)

Tables Icon

Table 1 Comparison of nonlinear Kerr coefficient n2 and optical band gap energy Eg for silicon, silicon-enriched nitride and stoichiometric silicon nitride.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ = 2 π n 2 λ A eff .
I 0 I 1 = J 0 2 ( φ SPM / 2 ) + J 1 2 ( φ SPM / 2 ) J 1 2 ( φ SPM / 2 ) + J 2 2 ( φ SPM / 2 ) ,
φ SPM = γ L eff P in ,

Metrics