Abstract

An adaptive electrowetting-based element with focusing and steering capability has been demonstrated in a monolithic design. Curvature and tip-tilt variation have been demonstrated using low voltages. A steering range of up to 4.3° and lens tuning of 18 diopters have been measured at 30 V DC and 21 V DC, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simulation of electrowetting lens and prism arrays for wavefront compensation

Juliet T. Gopinath, Victor M. Bright, Carol C. Cogswell, Robert D. Niederriter, Alexander Watson, Ramzi Zahreddine, and Robert H. Cormack
Appl. Opt. 51(27) 6618-6623 (2012)

Two-photon laser scanning microscopy with electrowetting-based prism scanning

Omkar D. Supekar, Baris N. Ozbay, Mo Zohrabi, Philip D. Nystrom, Gregory L. Futia, Diego Restrepo, Emily A. Gibson, Juliet T. Gopinath, and Victor M. Bright
Biomed. Opt. Express 8(12) 5412-5426 (2017)

Agile wide-angle beam steering with electrowetting microprisms

Neil R. Smith, Don C. Abeysinghe, Joseph W. Haus, and Jason Heikenfeld
Opt. Express 14(14) 6557-6563 (2006)

References

  • View by:
  • |
  • |
  • |

  1. 1. R. Tyson, Principles of Adaptive Optics (Academic Press, 1991).
  2. 2. U. Efron, Spatial Light Modulator Technology: Materials, Devices and Applications (Marcel Dekker, 1995).
  3. 3R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems,” Appl. Opt. 52(14), 3172–3177 (2013).
    [Crossref] [PubMed]
  4. 4. F. Krogmann, W. Moench, and H. Zappe, “A MEMS-Based Variable Micro-Lens System,” J. Opt. A: Pure Appl. Opt. 8(330), S330–S336 (2006).
  5. 5C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
    [Crossref] [PubMed]
  6. 6S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
    [Crossref]
  7. 7S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85, 1128–1130 (2004).
    [Crossref]
  8. 8J. Bae, Y.-S. Choi, K. Choi, Y. Kim, Y. Kwon, H. Song, E. Kim, S. Choi, J. Lee, and S. Lee, “Arrayed beam steering device for advanced 3D displays,” Proc. SPIE 8616, 86160H (2013).
    [Crossref]
  9. 9. Y. Kwon, Y. Choi, K. Choi, Y. Kim, S. Choi, and J. Lee, “Development of micro variable optics array,” in Proceedings of IEEE Microelectromechanical Systems (MEMS 2014), pp.72–75.
  10. 10L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
    [Crossref]
  11. 11J. C. Heikenfeld, N. R. Smith, B. Sun, K. Zhou, L. Hou, Y. Lao, and B. Raj, “Flat electrowetting optics and displays,” Proc. SPIE 6887, 688705 (2008).
    [Crossref]
  12. 12K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
    [Crossref]
  13. 13Y. Kim, Y.-S. Choi, K. Choi, Y. Kwon, J. Bae, A. Morozov, and H.-S. Lee, “Measurement of the optical characteristics of electro-wetting prism array for three-dimensional display,” Proc. SPIE 8643, 864305 (2013).
    [Crossref]
  14. 14S. Deladi, J. F. Suijver, Y. S. Shi, K. Shahzad, B. M. De Boer, a. J. J. Rademakers, C. Van Der Vleuten, L. Jankovic, E. Bongers, E. Harks, and S. Kuiper, “Miniaturized ultrasound scanner by electrowetting,” Appl. Phys. Lett.97, 19–22 (2010).
    [Crossref]
  15. 15C. Liu, L. Li, and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51(11), 114002 (2012).
    [Crossref]
  16. 16N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
    [Crossref] [PubMed]
  17. 17L. Hou, N. R. Smith, and J. Heikenfeld, “Electrowetting manipulation of any optical film,” Appl. Phys. Lett. 90(25), 251114 (2007).
    [Crossref]
  18. 18J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
    [Crossref]
  19. 19. T. Fuji and T. Fukuchi, Laser remote sensing (CRC Press, 2005).
  20. 20B. N. Ozbay, J. T. Losacco, R. Cormack, R. Weir, V. M. Bright, J. T. Gopinath, D. Restrepo, and E. A. Gibson, “Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts,” Opt. Lett. 40(11), 2553–2556 (2015).
    [Crossref] [PubMed]
  21. 21F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
    [Crossref]
  22. 22T. Roques-Carmes, S. Palmier, R. Hayes, and L. J. M. Schlangen, The effect of the oil/water interfacial tension on electrowetting driven fluid motion,” Eng. Asp. 267(1–3), 56–63 (2005).
    [Crossref]
  23. 23A. M. Watson, K. Dease, S. Terrab, C. Roath, J. T. Gopinath, and V. M. Bright, “Focus-tunable low-power electrowetting lenses with thin parylene films,” Appl. Opt. 54(20), 6224–6229 (2015).
    [Crossref] [PubMed]

2015 (2)

2013 (3)

3R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems,” Appl. Opt. 52(14), 3172–3177 (2013).
[Crossref] [PubMed]

8J. Bae, Y.-S. Choi, K. Choi, Y. Kim, Y. Kwon, H. Song, E. Kim, S. Choi, J. Lee, and S. Lee, “Arrayed beam steering device for advanced 3D displays,” Proc. SPIE 8616, 86160H (2013).
[Crossref]

13Y. Kim, Y.-S. Choi, K. Choi, Y. Kwon, J. Bae, A. Morozov, and H.-S. Lee, “Measurement of the optical characteristics of electro-wetting prism array for three-dimensional display,” Proc. SPIE 8643, 864305 (2013).
[Crossref]

2012 (2)

15C. Liu, L. Li, and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51(11), 114002 (2012).
[Crossref]

5C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref] [PubMed]

2011 (1)

18J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
[Crossref]

2010 (1)

10L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
[Crossref]

2009 (2)

6S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

12K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[Crossref]

2008 (1)

11J. C. Heikenfeld, N. R. Smith, B. Sun, K. Zhou, L. Hou, Y. Lao, and B. Raj, “Flat electrowetting optics and displays,” Proc. SPIE 6887, 688705 (2008).
[Crossref]

2007 (1)

17L. Hou, N. R. Smith, and J. Heikenfeld, “Electrowetting manipulation of any optical film,” Appl. Phys. Lett. 90(25), 251114 (2007).
[Crossref]

2006 (2)

16N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref] [PubMed]

4. F. Krogmann, W. Moench, and H. Zappe, “A MEMS-Based Variable Micro-Lens System,” J. Opt. A: Pure Appl. Opt. 8(330), S330–S336 (2006).

2005 (2)

21F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

22T. Roques-Carmes, S. Palmier, R. Hayes, and L. J. M. Schlangen, The effect of the oil/water interfacial tension on electrowetting driven fluid motion,” Eng. Asp. 267(1–3), 56–63 (2005).
[Crossref]

Abeysinghe, D. C.

Bae, J.

8J. Bae, Y.-S. Choi, K. Choi, Y. Kim, Y. Kwon, H. Song, E. Kim, S. Choi, J. Lee, and S. Lee, “Arrayed beam steering device for advanced 3D displays,” Proc. SPIE 8616, 86160H (2013).
[Crossref]

13Y. Kim, Y.-S. Choi, K. Choi, Y. Kwon, J. Bae, A. Morozov, and H.-S. Lee, “Measurement of the optical characteristics of electro-wetting prism array for three-dimensional display,” Proc. SPIE 8643, 864305 (2013).
[Crossref]

Baret, J.-C.

21F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Bongers, E.

14S. Deladi, J. F. Suijver, Y. S. Shi, K. Shahzad, B. M. De Boer, a. J. J. Rademakers, C. Van Der Vleuten, L. Jankovic, E. Bongers, E. Harks, and S. Kuiper, “Miniaturized ultrasound scanner by electrowetting,” Appl. Phys. Lett.97, 19–22 (2010).
[Crossref]

Bright, V. M.

Chen, C.-L.

18J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
[Crossref]

Cheng, J.

18J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
[Crossref]

Choi, K.

13Y. Kim, Y.-S. Choi, K. Choi, Y. Kwon, J. Bae, A. Morozov, and H.-S. Lee, “Measurement of the optical characteristics of electro-wetting prism array for three-dimensional display,” Proc. SPIE 8643, 864305 (2013).
[Crossref]

8J. Bae, Y.-S. Choi, K. Choi, Y. Kim, Y. Kwon, H. Song, E. Kim, S. Choi, J. Lee, and S. Lee, “Arrayed beam steering device for advanced 3D displays,” Proc. SPIE 8616, 86160H (2013).
[Crossref]

Choi, S.

8J. Bae, Y.-S. Choi, K. Choi, Y. Kim, Y. Kwon, H. Song, E. Kim, S. Choi, J. Lee, and S. Lee, “Arrayed beam steering device for advanced 3D displays,” Proc. SPIE 8616, 86160H (2013).
[Crossref]

Choi, W. B.

6S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Choi, Y.-S.

8J. Bae, Y.-S. Choi, K. Choi, Y. Kim, Y. Kwon, H. Song, E. Kim, S. Choi, J. Lee, and S. Lee, “Arrayed beam steering device for advanced 3D displays,” Proc. SPIE 8616, 86160H (2013).
[Crossref]

13Y. Kim, Y.-S. Choi, K. Choi, Y. Kwon, J. Bae, A. Morozov, and H.-S. Lee, “Measurement of the optical characteristics of electro-wetting prism array for three-dimensional display,” Proc. SPIE 8643, 864305 (2013).
[Crossref]

Cogswell, C. J.

Cormack, R.

Cormack, R. H.

De Boer, B. M.

14S. Deladi, J. F. Suijver, Y. S. Shi, K. Shahzad, B. M. De Boer, a. J. J. Rademakers, C. Van Der Vleuten, L. Jankovic, E. Bongers, E. Harks, and S. Kuiper, “Miniaturized ultrasound scanner by electrowetting,” Appl. Phys. Lett.97, 19–22 (2010).
[Crossref]

Dean, K. A.

12K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[Crossref]

Dease, K.

Deladi, S.

14S. Deladi, J. F. Suijver, Y. S. Shi, K. Shahzad, B. M. De Boer, a. J. J. Rademakers, C. Van Der Vleuten, L. Jankovic, E. Bongers, E. Harks, and S. Kuiper, “Miniaturized ultrasound scanner by electrowetting,” Appl. Phys. Lett.97, 19–22 (2010).
[Crossref]

Gibson, E. A.

Gopinath, J. T.

Han, S.

6S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Harks, E.

14S. Deladi, J. F. Suijver, Y. S. Shi, K. Shahzad, B. M. De Boer, a. J. J. Rademakers, C. Van Der Vleuten, L. Jankovic, E. Bongers, E. Harks, and S. Kuiper, “Miniaturized ultrasound scanner by electrowetting,” Appl. Phys. Lett.97, 19–22 (2010).
[Crossref]

Haus, J. W.

Hayes, R.

22T. Roques-Carmes, S. Palmier, R. Hayes, and L. J. M. Schlangen, The effect of the oil/water interfacial tension on electrowetting driven fluid motion,” Eng. Asp. 267(1–3), 56–63 (2005).
[Crossref]

Heikenfeld, J.

10L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
[Crossref]

12K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[Crossref]

17L. Hou, N. R. Smith, and J. Heikenfeld, “Electrowetting manipulation of any optical film,” Appl. Phys. Lett. 90(25), 251114 (2007).
[Crossref]

16N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref] [PubMed]

Heikenfeld, J. C.

11J. C. Heikenfeld, N. R. Smith, B. Sun, K. Zhou, L. Hou, Y. Lao, and B. Raj, “Flat electrowetting optics and displays,” Proc. SPIE 6887, 688705 (2008).
[Crossref]

Hendriks, B. H. W.

7S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85, 1128–1130 (2004).
[Crossref]

Hou, L.

10L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
[Crossref]

11J. C. Heikenfeld, N. R. Smith, B. Sun, K. Zhou, L. Hou, Y. Lao, and B. Raj, “Flat electrowetting optics and displays,” Proc. SPIE 6887, 688705 (2008).
[Crossref]

17L. Hou, N. R. Smith, and J. Heikenfeld, “Electrowetting manipulation of any optical film,” Appl. Phys. Lett. 90(25), 251114 (2007).
[Crossref]

Howard, E. M.

12K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[Crossref]

Jankovic, L.

14S. Deladi, J. F. Suijver, Y. S. Shi, K. Shahzad, B. M. De Boer, a. J. J. Rademakers, C. Van Der Vleuten, L. Jankovic, E. Bongers, E. Harks, and S. Kuiper, “Miniaturized ultrasound scanner by electrowetting,” Appl. Phys. Lett.97, 19–22 (2010).
[Crossref]

Jiang, H.

5C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref] [PubMed]

Johnson, M. R.

12K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[Crossref]

Kang, M. S.

6S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Kim, E.

8J. Bae, Y.-S. Choi, K. Choi, Y. Kim, Y. Kwon, H. Song, E. Kim, S. Choi, J. Lee, and S. Lee, “Arrayed beam steering device for advanced 3D displays,” Proc. SPIE 8616, 86160H (2013).
[Crossref]

Kim, Y.

13Y. Kim, Y.-S. Choi, K. Choi, Y. Kwon, J. Bae, A. Morozov, and H.-S. Lee, “Measurement of the optical characteristics of electro-wetting prism array for three-dimensional display,” Proc. SPIE 8643, 864305 (2013).
[Crossref]

8J. Bae, Y.-S. Choi, K. Choi, Y. Kim, Y. Kwon, H. Song, E. Kim, S. Choi, J. Lee, and S. Lee, “Arrayed beam steering device for advanced 3D displays,” Proc. SPIE 8616, 86160H (2013).
[Crossref]

Kim, Y. M.

6S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Krogmann, F.

4. F. Krogmann, W. Moench, and H. Zappe, “A MEMS-Based Variable Micro-Lens System,” J. Opt. A: Pure Appl. Opt. 8(330), S330–S336 (2006).

Kuiper, S.

7S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85, 1128–1130 (2004).
[Crossref]

14S. Deladi, J. F. Suijver, Y. S. Shi, K. Shahzad, B. M. De Boer, a. J. J. Rademakers, C. Van Der Vleuten, L. Jankovic, E. Bongers, E. Harks, and S. Kuiper, “Miniaturized ultrasound scanner by electrowetting,” Appl. Phys. Lett.97, 19–22 (2010).
[Crossref]

Kwon, Y.

13Y. Kim, Y.-S. Choi, K. Choi, Y. Kwon, J. Bae, A. Morozov, and H.-S. Lee, “Measurement of the optical characteristics of electro-wetting prism array for three-dimensional display,” Proc. SPIE 8643, 864305 (2013).
[Crossref]

8J. Bae, Y.-S. Choi, K. Choi, Y. Kim, Y. Kwon, H. Song, E. Kim, S. Choi, J. Lee, and S. Lee, “Arrayed beam steering device for advanced 3D displays,” Proc. SPIE 8616, 86160H (2013).
[Crossref]

Lao, Y.

11J. C. Heikenfeld, N. R. Smith, B. Sun, K. Zhou, L. Hou, Y. Lao, and B. Raj, “Flat electrowetting optics and displays,” Proc. SPIE 6887, 688705 (2008).
[Crossref]

Lee, H.-S.

13Y. Kim, Y.-S. Choi, K. Choi, Y. Kwon, J. Bae, A. Morozov, and H.-S. Lee, “Measurement of the optical characteristics of electro-wetting prism array for three-dimensional display,” Proc. SPIE 8643, 864305 (2013).
[Crossref]

Lee, J.

8J. Bae, Y.-S. Choi, K. Choi, Y. Kim, Y. Kwon, H. Song, E. Kim, S. Choi, J. Lee, and S. Lee, “Arrayed beam steering device for advanced 3D displays,” Proc. SPIE 8616, 86160H (2013).
[Crossref]

Lee, S.

8J. Bae, Y.-S. Choi, K. Choi, Y. Kim, Y. Kwon, H. Song, E. Kim, S. Choi, J. Lee, and S. Lee, “Arrayed beam steering device for advanced 3D displays,” Proc. SPIE 8616, 86160H (2013).
[Crossref]

Li, C.

5C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref] [PubMed]

Li, L.

15C. Liu, L. Li, and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51(11), 114002 (2012).
[Crossref]

Liu, C.

15C. Liu, L. Li, and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51(11), 114002 (2012).
[Crossref]

Losacco, J. T.

Min, N. K.

6S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Moench, W.

4. F. Krogmann, W. Moench, and H. Zappe, “A MEMS-Based Variable Micro-Lens System,” J. Opt. A: Pure Appl. Opt. 8(330), S330–S336 (2006).

Morozov, A.

13Y. Kim, Y.-S. Choi, K. Choi, Y. Kwon, J. Bae, A. Morozov, and H.-S. Lee, “Measurement of the optical characteristics of electro-wetting prism array for three-dimensional display,” Proc. SPIE 8643, 864305 (2013).
[Crossref]

Mugele, F.

21F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Niederriter, R. D.

Ozbay, B. N.

Palmier, S.

22T. Roques-Carmes, S. Palmier, R. Hayes, and L. J. M. Schlangen, The effect of the oil/water interfacial tension on electrowetting driven fluid motion,” Eng. Asp. 267(1–3), 56–63 (2005).
[Crossref]

Rademakers, a. J. J.

14S. Deladi, J. F. Suijver, Y. S. Shi, K. Shahzad, B. M. De Boer, a. J. J. Rademakers, C. Van Der Vleuten, L. Jankovic, E. Bongers, E. Harks, and S. Kuiper, “Miniaturized ultrasound scanner by electrowetting,” Appl. Phys. Lett.97, 19–22 (2010).
[Crossref]

Raj, B.

11J. C. Heikenfeld, N. R. Smith, B. Sun, K. Zhou, L. Hou, Y. Lao, and B. Raj, “Flat electrowetting optics and displays,” Proc. SPIE 6887, 688705 (2008).
[Crossref]

Restrepo, D.

Roath, C.

Roques-Carmes, T.

22T. Roques-Carmes, S. Palmier, R. Hayes, and L. J. M. Schlangen, The effect of the oil/water interfacial tension on electrowetting driven fluid motion,” Eng. Asp. 267(1–3), 56–63 (2005).
[Crossref]

Schlangen, L. J. M.

22T. Roques-Carmes, S. Palmier, R. Hayes, and L. J. M. Schlangen, The effect of the oil/water interfacial tension on electrowetting driven fluid motion,” Eng. Asp. 267(1–3), 56–63 (2005).
[Crossref]

Seo, J. H.

6S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Seo, S. W.

6S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Shahzad, K.

14S. Deladi, J. F. Suijver, Y. S. Shi, K. Shahzad, B. M. De Boer, a. J. J. Rademakers, C. Van Der Vleuten, L. Jankovic, E. Bongers, E. Harks, and S. Kuiper, “Miniaturized ultrasound scanner by electrowetting,” Appl. Phys. Lett.97, 19–22 (2010).
[Crossref]

Shi, Y. S.

14S. Deladi, J. F. Suijver, Y. S. Shi, K. Shahzad, B. M. De Boer, a. J. J. Rademakers, C. Van Der Vleuten, L. Jankovic, E. Bongers, E. Harks, and S. Kuiper, “Miniaturized ultrasound scanner by electrowetting,” Appl. Phys. Lett.97, 19–22 (2010).
[Crossref]

Smith, N.

10L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
[Crossref]

Smith, N. R.

11J. C. Heikenfeld, N. R. Smith, B. Sun, K. Zhou, L. Hou, Y. Lao, and B. Raj, “Flat electrowetting optics and displays,” Proc. SPIE 6887, 688705 (2008).
[Crossref]

17L. Hou, N. R. Smith, and J. Heikenfeld, “Electrowetting manipulation of any optical film,” Appl. Phys. Lett. 90(25), 251114 (2007).
[Crossref]

16N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref] [PubMed]

Song, H.

8J. Bae, Y.-S. Choi, K. Choi, Y. Kim, Y. Kwon, H. Song, E. Kim, S. Choi, J. Lee, and S. Lee, “Arrayed beam steering device for advanced 3D displays,” Proc. SPIE 8616, 86160H (2013).
[Crossref]

Suijver, J. F.

14S. Deladi, J. F. Suijver, Y. S. Shi, K. Shahzad, B. M. De Boer, a. J. J. Rademakers, C. Van Der Vleuten, L. Jankovic, E. Bongers, E. Harks, and S. Kuiper, “Miniaturized ultrasound scanner by electrowetting,” Appl. Phys. Lett.97, 19–22 (2010).
[Crossref]

Sun, B.

11J. C. Heikenfeld, N. R. Smith, B. Sun, K. Zhou, L. Hou, Y. Lao, and B. Raj, “Flat electrowetting optics and displays,” Proc. SPIE 6887, 688705 (2008).
[Crossref]

Sung, M. Y.

6S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Terrab, S.

Van Der Vleuten, C.

14S. Deladi, J. F. Suijver, Y. S. Shi, K. Shahzad, B. M. De Boer, a. J. J. Rademakers, C. Van Der Vleuten, L. Jankovic, E. Bongers, E. Harks, and S. Kuiper, “Miniaturized ultrasound scanner by electrowetting,” Appl. Phys. Lett.97, 19–22 (2010).
[Crossref]

Wang, Q.-H.

15C. Liu, L. Li, and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51(11), 114002 (2012).
[Crossref]

Watson, A. M.

Weir, R.

Yang, J.

10L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
[Crossref]

Zahreddine, R. N.

Zappe, H.

4. F. Krogmann, W. Moench, and H. Zappe, “A MEMS-Based Variable Micro-Lens System,” J. Opt. A: Pure Appl. Opt. 8(330), S330–S336 (2006).

Zhang, J.

10L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
[Crossref]

Zhou, K.

12K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[Crossref]

11J. C. Heikenfeld, N. R. Smith, B. Sun, K. Zhou, L. Hou, Y. Lao, and B. Raj, “Flat electrowetting optics and displays,” Proc. SPIE 6887, 688705 (2008).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

5C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref] [PubMed]

17L. Hou, N. R. Smith, and J. Heikenfeld, “Electrowetting manipulation of any optical film,” Appl. Phys. Lett. 90(25), 251114 (2007).
[Crossref]

18J. Cheng and C.-L. Chen, “Adaptive beam tracking and steering via electrowetting-controlled liquid prism,” Appl. Phys. Lett. 99(19), 191108 (2011).
[Crossref]

Eng. Asp. (1)

22T. Roques-Carmes, S. Palmier, R. Hayes, and L. J. M. Schlangen, The effect of the oil/water interfacial tension on electrowetting driven fluid motion,” Eng. Asp. 267(1–3), 56–63 (2005).
[Crossref]

J. Micromech. Microeng. (2)

10L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
[Crossref]

12K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

4. F. Krogmann, W. Moench, and H. Zappe, “A MEMS-Based Variable Micro-Lens System,” J. Opt. A: Pure Appl. Opt. 8(330), S330–S336 (2006).

J. Phys. Condens. Matter (1)

21F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Jpn. J. Appl. Phys. (1)

6S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Opt. Eng. (1)

15C. Liu, L. Li, and Q.-H. Wang, “Liquid prism for beam tracking and steering,” Opt. Eng. 51(11), 114002 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (3)

8J. Bae, Y.-S. Choi, K. Choi, Y. Kim, Y. Kwon, H. Song, E. Kim, S. Choi, J. Lee, and S. Lee, “Arrayed beam steering device for advanced 3D displays,” Proc. SPIE 8616, 86160H (2013).
[Crossref]

13Y. Kim, Y.-S. Choi, K. Choi, Y. Kwon, J. Bae, A. Morozov, and H.-S. Lee, “Measurement of the optical characteristics of electro-wetting prism array for three-dimensional display,” Proc. SPIE 8643, 864305 (2013).
[Crossref]

11J. C. Heikenfeld, N. R. Smith, B. Sun, K. Zhou, L. Hou, Y. Lao, and B. Raj, “Flat electrowetting optics and displays,” Proc. SPIE 6887, 688705 (2008).
[Crossref]

Other (6)

14S. Deladi, J. F. Suijver, Y. S. Shi, K. Shahzad, B. M. De Boer, a. J. J. Rademakers, C. Van Der Vleuten, L. Jankovic, E. Bongers, E. Harks, and S. Kuiper, “Miniaturized ultrasound scanner by electrowetting,” Appl. Phys. Lett.97, 19–22 (2010).
[Crossref]

9. Y. Kwon, Y. Choi, K. Choi, Y. Kim, S. Choi, and J. Lee, “Development of micro variable optics array,” in Proceedings of IEEE Microelectromechanical Systems (MEMS 2014), pp.72–75.

7S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett.85, 1128–1130 (2004).
[Crossref]

19. T. Fuji and T. Fukuchi, Laser remote sensing (CRC Press, 2005).

1. R. Tyson, Principles of Adaptive Optics (Academic Press, 1991).

2. U. Efron, Spatial Light Modulator Technology: Materials, Devices and Applications (Marcel Dekker, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Electrowetting on dielectrioc: a) polar liquid in a non-polar fluid that is separated from a conductive substrate by a dielectric layer and hydrophobic coating; inset on the left shows that the contact angle at 0 V is determined by the interfacial surface energy balance of the liquid -to-fluid γlf, substrate-to-fluid γsf, and substrate-to-liquid γsl; image to the right shows a water droplet in air with an initial angle of 113°. b) the liquid contact angle changes to an angle θ2 when a voltage is applied; image to the right shows a change in the water droplet contact angle to 90° when 8.5 V is applied.
Fig. 2
Fig. 2 An oil-water electrowetting lens-prism element with an electrode on the base and a hydrophobic coating, dielectric layer, and two electrodes along the sidewalls. Voltage VL and VR denote the applied voltage on the left and right sidewall electrodes, respectively, with the following cases: a) oil-water interface curvature when no voltage is applied, contact angle θ is shown; b) liquid interface tilted to the left by a prism apex angle α when VL >VR ; c) flat liquid interface when a critical voltage VC is applied on both sidewalls.
Fig. 3
Fig. 3 Device fabrication: a) Kapton tape masking of glass tube; b) IZO sputtering for base electrode; c) Parylene vapor-phase deposition and Teflon dip-coating; d) sample bonding onto ITO-coated glass substrate.
Fig. 4
Fig. 4 The electrowetting lens-prism device, operated by a DC power supply, is placed on a platform. A camera images the device cross-section, as shown by the photo on the left, to examine the liquid interface. Beam steering is measured by determining the displacement of a 630 nm beam spot on a grid screen, fixed at a height h from the device platform; a second camera captures the beam spot position, as shown by the photograph on the right.
Fig. 5
Fig. 5 Cross-sectional view of the device as imaged by Camera 1, showing: a) intial setup of sample filled with dodecane oil and 1% SDS water; b) 30 V applied onto left sidewall with a 21.3° prism apex angle; c) 30 V applied onto right sidewall with a 21.8° prism apex angle; d) lens tuning with a 193 mm curvature at 16 V.
Fig. 6
Fig. 6 Electrowetting prism results: a) prism apex angle as a function of voltage for left and right sidewall tuning, including measured data with ± 0.4° uncertainty error and the expected steering from the Lippmann-Young model; b) prism steering from measured beam spot displacement with ± 0.5° uncertainty and the expected steering from the electrowetting prism refraction model that uses measured prism apex angle.
Fig. 7
Fig. 7 Electrowetting lens tuning of an oil/water lens-prism device: a) liquid contact angle from experiments with ± 1.6° measurement uncertainty and Lippmann-Young Model; b) dioptric power determined from the curvature of the liquid interface ( ± 0.6 m-1 average measurement uncertainty) from voltages 0-21 V, indicating a change from positive to negative lens at 16 V.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

cos θ 1 = γ sf γ sl γ lf ,
cos θ 2 =cos θ 1 + ε d 2d γ lf V 2 ,
1 f = 1 R ( n 1 n 2 1 ),

Metrics