Abstract

Single- and two-color double-fs-pulse experiments were performed on titanium to study the dynamics of the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder inter-ferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences in two configurations – either at 800 nm only, or at 400 and 800 nm wavelengths. The inter-pulse delays of the individual 50-fs pulses ranged up to some tens of picoseconds. Multiple of these single- or two-color double-fs-pulse sequences were collinearly focused by a spherical mirror to the sample surface. In both experimental configurations, the peak fluence of each individual pulse was kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics were analyzed by scanning electron microscopy and the periods were quantified by Fourier analyses. The LIPSS periods along with the orientation allow a clear identification of the pulse which dominates the energy coupling to the material. A plasmonic model successfully explains the delay-dependence of the LIPSS on titanium and confirms the importance of the ultrafast energy deposition stage for LIPSS formation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation

Sandra Höhm, Marcel Herzlieb, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(1) 61-71 (2015)

Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium

Chandra S.R. Nathala, Ali Ajami, Andrey A. Ionin, Sergey I. Kudryashov, Sergey V Makarov, Thomas Ganz, Andreas Assion, and Wolfgang Husinsky
Opt. Express 23(5) 5915-5929 (2015)

Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon

Thibault J.-Y. Derrien, Jörg Krüger, Tatiana E. Itina, Sandra Höhm, Arkadi Rosenfeld, and Jörn Bonse
Opt. Express 21(24) 29643-29655 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
    [Crossref]
  2. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
    [Crossref] [PubMed]
  3. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
    [Crossref]
  4. J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
    [Crossref]
  5. K. Wallat, D. Dörr, R. Le Harzic, F. Stracke, D. Sauer, M. Neumeier, A. Kovtun, H. Zimmermann, and M. Epple, “Cellular reactions toward nanostructured silicon surfaces created by laser ablation,” J. Laser Appl. 24(4), 042016 (2012).
    [Crossref]
  6. A. V. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
    [Crossref]
  7. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
    [Crossref]
  8. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462 (2003).
    [Crossref]
  9. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
    [Crossref]
  10. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
    [Crossref]
  11. R. Wagner and J. Gottmann, “Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation,” J. Phys. Conf. Ser. 59, 333–337 (2007).
    [Crossref]
  12. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
    [Crossref]
  13. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
    [Crossref]
  14. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  15. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  16. M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys. 525(1–2), 74–86 (2013).
    [Crossref]
  17. T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116(7), 074902 (2014).
    [Crossref]
  18. X. Liu, P.-K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng. Rep. 47(3–4), 49–121 (2004).
    [Crossref]
  19. J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
    [Crossref]
  20. J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
    [Crossref]
  21. S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,” Appl. Surf. Sci. 278(1), 7–12 (2013).
    [Crossref]
  22. V. Hommes, M. Miclea, and R. Hergenröder, “Silicon surface morphology study after exposure to tailored femtosecond pulses,” Appl. Surf. Sci. 252(20), 7449–7460 (2006).
    [Crossref]
  23. T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
    [Crossref] [PubMed]
  24. M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys. 110(1), 014910 (2011).
    [Crossref]
  25. M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
    [Crossref] [PubMed]
  26. M. Hashida, L. Gemini, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic grating structures on metal self-organized by double-pulse irradiation,” J. Laser Micro/Nanoeng. 9(3), 234–237 (2014).
    [Crossref]
  27. L. Gemini, M. Hashida, Y. Miyasaka, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic surface structures on titanium self-organized upon double femtosecond pulse exposures,” Appl. Surf. Sci. 336, 349–353 (2015).
    [Crossref]
  28. S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
    [Crossref]
  29. S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
    [Crossref] [PubMed]
  30. S. Guizard, S. Klimentov, A. Mouskeftaras, N. Fedorov, G. Geoffroy, and G. Vilmart, “Ultrafast breakdown of dielectrics: energy absorption mechanisms investigated by double pulse experiments,” Appl. Surf. Sci. 336, 206–211 (2015).
    [Crossref]
  31. J. Cong, J. Yang, B. Zhao, and X. Xu, “Fabricating subwavelength dot-matrix surface structures of molybdenum by transient correlated actions of two-color femtosecond laser beams,” Opt. Express 23(4), 5357–5367 (2015).
    [Crossref] [PubMed]
  32. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [Crossref] [PubMed]
  33. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  34. X.-F. Li, C.-Y. Zhang, H. Li, Q.-F. Dai, S. Lan, and S.-L. Tie, “Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses,” Opt. Express 22(23), 28086–28099 (2014).
    [Crossref] [PubMed]
  35. S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
    [Crossref]
  36. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1986).
  37. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
    [Crossref] [PubMed]
  38. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  39. J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
    [Crossref]
  40. E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” J. Exp. Theor. Phys. 113(1), 14–26 (2011).
    [Crossref]
  41. K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury, “Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove,” Opt. Express 23(15), 19432–19441 (2015).
    [Crossref]
  42. J. Bonse, A. Rosenfeld, and J. Krüger, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2010).
    [Crossref]
  43. S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
    [Crossref]
  44. S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica upon cross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
    [Crossref]

2015 (7)

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

L. Gemini, M. Hashida, Y. Miyasaka, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic surface structures on titanium self-organized upon double femtosecond pulse exposures,” Appl. Surf. Sci. 336, 349–353 (2015).
[Crossref]

S. Guizard, S. Klimentov, A. Mouskeftaras, N. Fedorov, G. Geoffroy, and G. Vilmart, “Ultrafast breakdown of dielectrics: energy absorption mechanisms investigated by double pulse experiments,” Appl. Surf. Sci. 336, 206–211 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica upon cross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref] [PubMed]

J. Cong, J. Yang, B. Zhao, and X. Xu, “Fabricating subwavelength dot-matrix surface structures of molybdenum by transient correlated actions of two-color femtosecond laser beams,” Opt. Express 23(4), 5357–5367 (2015).
[Crossref] [PubMed]

K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury, “Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove,” Opt. Express 23(15), 19432–19441 (2015).
[Crossref]

2014 (3)

X.-F. Li, C.-Y. Zhang, H. Li, Q.-F. Dai, S. Lan, and S.-L. Tie, “Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses,” Opt. Express 22(23), 28086–28099 (2014).
[Crossref] [PubMed]

M. Hashida, L. Gemini, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic grating structures on metal self-organized by double-pulse irradiation,” J. Laser Micro/Nanoeng. 9(3), 234–237 (2014).
[Crossref]

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116(7), 074902 (2014).
[Crossref]

2013 (8)

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys. 525(1–2), 74–86 (2013).
[Crossref]

A. V. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
[Crossref]

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,” Appl. Surf. Sci. 278(1), 7–12 (2013).
[Crossref]

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
[Crossref]

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
[Crossref] [PubMed]

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

2012 (3)

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

K. Wallat, D. Dörr, R. Le Harzic, F. Stracke, D. Sauer, M. Neumeier, A. Kovtun, H. Zimmermann, and M. Epple, “Cellular reactions toward nanostructured silicon surfaces created by laser ablation,” J. Laser Appl. 24(4), 042016 (2012).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

2011 (3)

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” J. Exp. Theor. Phys. 113(1), 14–26 (2011).
[Crossref]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
[Crossref] [PubMed]

2010 (3)

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
[Crossref] [PubMed]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2010).
[Crossref]

2009 (3)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

2008 (2)

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

2007 (1)

R. Wagner and J. Gottmann, “Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation,” J. Phys. Conf. Ser. 59, 333–337 (2007).
[Crossref]

2006 (1)

V. Hommes, M. Miclea, and R. Hergenröder, “Silicon surface morphology study after exposure to tailored femtosecond pulses,” Appl. Surf. Sci. 252(20), 7449–7460 (2006).
[Crossref]

2005 (2)

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

2004 (1)

X. Liu, P.-K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng. Rep. 47(3–4), 49–121 (2004).
[Crossref]

2003 (1)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462 (2003).
[Crossref]

2002 (1)

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

1982 (1)

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

Audouard, E.

Austin, D. R.

Barberoglou, M.

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
[Crossref] [PubMed]

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

Bonse, J.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica upon cross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref] [PubMed]

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116(7), 074902 (2014).
[Crossref]

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,” Appl. Surf. Sci. 278(1), 7–12 (2013).
[Crossref]

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
[Crossref]

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2010).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462 (2003).
[Crossref]

Bounhalli, M.

Chang, W.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Cheng, J.

Cheng, Y.

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys. 525(1–2), 74–86 (2013).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Cho, S.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Chowdhury, E. A.

Chu, P.-K.

X. Liu, P.-K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng. Rep. 47(3–4), 49–121 (2004).
[Crossref]

Colombier, J. P.

Cong, J.

Costache, F.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Dai, Q.-F.

Das, S. K.

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Derrien, T. J.-Y.

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116(7), 074902 (2014).
[Crossref]

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

Ding, C.

X. Liu, P.-K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng. Rep. 47(3–4), 49–121 (2004).
[Crossref]

Dörr, D.

K. Wallat, D. Dörr, R. Le Harzic, F. Stracke, D. Sauer, M. Neumeier, A. Kovtun, H. Zimmermann, and M. Epple, “Cellular reactions toward nanostructured silicon surfaces created by laser ablation,” J. Laser Appl. 24(4), 042016 (2012).
[Crossref]

Dufft, D.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Dusser, B.

Epple, M.

K. Wallat, D. Dörr, R. Le Harzic, F. Stracke, D. Sauer, M. Neumeier, A. Kovtun, H. Zimmermann, and M. Epple, “Cellular reactions toward nanostructured silicon surfaces created by laser ablation,” J. Laser Appl. 24(4), 042016 (2012).
[Crossref]

Faure, N.

Fedorov, N.

S. Guizard, S. Klimentov, A. Mouskeftaras, N. Fedorov, G. Geoffroy, and G. Vilmart, “Ultrafast breakdown of dielectrics: energy absorption mechanisms investigated by double pulse experiments,” Appl. Surf. Sci. 336, 206–211 (2015).
[Crossref]

Fotakis, C.

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
[Crossref] [PubMed]

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

Garrelie, F.

Gemini, L.

L. Gemini, M. Hashida, Y. Miyasaka, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic surface structures on titanium self-organized upon double femtosecond pulse exposures,” Appl. Surf. Sci. 336, 349–353 (2015).
[Crossref]

M. Hashida, L. Gemini, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic grating structures on metal self-organized by double-pulse irradiation,” J. Laser Micro/Nanoeng. 9(3), 234–237 (2014).
[Crossref]

Geoffroy, G.

S. Guizard, S. Klimentov, A. Mouskeftaras, N. Fedorov, G. Geoffroy, and G. Vilmart, “Ultrafast breakdown of dielectrics: energy absorption mechanisms investigated by double pulse experiments,” Appl. Surf. Sci. 336, 206–211 (2015).
[Crossref]

Golosov, E. V.

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” J. Exp. Theor. Phys. 113(1), 14–26 (2011).
[Crossref]

Gottmann, J.

R. Wagner and J. Gottmann, “Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation,” J. Phys. Conf. Ser. 59, 333–337 (2007).
[Crossref]

Gray, D.

Grunwald, R.

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Guizard, S.

S. Guizard, S. Klimentov, A. Mouskeftaras, N. Fedorov, G. Geoffroy, and G. Vilmart, “Ultrafast breakdown of dielectrics: energy absorption mechanisms investigated by double pulse experiments,” Appl. Surf. Sci. 336, 206–211 (2015).
[Crossref]

Guo, C.

A. V. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Hartelt, M.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

Hashida, M.

L. Gemini, M. Hashida, Y. Miyasaka, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic surface structures on titanium self-organized upon double femtosecond pulse exposures,” Appl. Surf. Sci. 336, 349–353 (2015).
[Crossref]

M. Hashida, L. Gemini, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic grating structures on metal self-organized by double-pulse irradiation,” J. Laser Micro/Nanoeng. 9(3), 234–237 (2014).
[Crossref]

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462 (2003).
[Crossref]

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Henyk, M.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Hergenröder, R.

V. Hommes, M. Miclea, and R. Hergenröder, “Silicon surface morphology study after exposure to tailored femtosecond pulses,” Appl. Surf. Sci. 252(20), 7449–7460 (2006).
[Crossref]

Herzlieb, M.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref] [PubMed]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica upon cross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
[Crossref]

Höhm, S.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref] [PubMed]

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica upon cross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
[Crossref]

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116(7), 074902 (2014).
[Crossref]

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,” Appl. Surf. Sci. 278(1), 7–12 (2013).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
[Crossref]

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

Hommes, V.

V. Hommes, M. Miclea, and R. Hergenröder, “Silicon surface morphology study after exposure to tailored femtosecond pulses,” Appl. Surf. Sci. 252(20), 7449–7460 (2006).
[Crossref]

Huang, M.

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys. 525(1–2), 74–86 (2013).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Inoue, S.

L. Gemini, M. Hashida, Y. Miyasaka, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic surface structures on titanium self-organized upon double femtosecond pulse exposures,” Appl. Surf. Sci. 336, 349–353 (2015).
[Crossref]

M. Hashida, L. Gemini, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic grating structures on metal self-organized by double-pulse irradiation,” J. Laser Micro/Nanoeng. 9(3), 234–237 (2014).
[Crossref]

Ionin, A. A.

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” J. Exp. Theor. Phys. 113(1), 14–26 (2011).
[Crossref]

Itina, T. E.

Jia, T. Q.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Jourlin, M.

Kafka, K. R. P.

Kim, J.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Klimentov, S.

S. Guizard, S. Klimentov, A. Mouskeftaras, N. Fedorov, G. Geoffroy, and G. Vilmart, “Ultrafast breakdown of dielectrics: energy absorption mechanisms investigated by double pulse experiments,” Appl. Surf. Sci. 336, 206–211 (2015).
[Crossref]

Kolobov, Y. R.

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” J. Exp. Theor. Phys. 113(1), 14–26 (2011).
[Crossref]

Koter, R.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116(7), 074902 (2014).
[Crossref]

Kovtun, A.

K. Wallat, D. Dörr, R. Le Harzic, F. Stracke, D. Sauer, M. Neumeier, A. Kovtun, H. Zimmermann, and M. Epple, “Cellular reactions toward nanostructured silicon surfaces created by laser ablation,” J. Laser Appl. 24(4), 042016 (2012).
[Crossref]

Krüger, J.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica upon cross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref] [PubMed]

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116(7), 074902 (2014).
[Crossref]

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,” Appl. Surf. Sci. 278(1), 7–12 (2013).
[Crossref]

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
[Crossref]

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2010).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Kudryashov, S. I.

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” J. Exp. Theor. Phys. 113(1), 14–26 (2011).
[Crossref]

Kuroda, H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Lan, S.

Le Harzic, R.

K. Wallat, D. Dörr, R. Le Harzic, F. Stracke, D. Sauer, M. Neumeier, A. Kovtun, H. Zimmermann, and M. Epple, “Cellular reactions toward nanostructured silicon surfaces created by laser ablation,” J. Laser Appl. 24(4), 042016 (2012).
[Crossref]

Li, H.

Li, R. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Li, X.-F.

Ligachev, A. E.

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” J. Exp. Theor. Phys. 113(1), 14–26 (2011).
[Crossref]

Limpouch, J.

L. Gemini, M. Hashida, Y. Miyasaka, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic surface structures on titanium self-organized upon double femtosecond pulse exposures,” Appl. Surf. Sci. 336, 349–353 (2015).
[Crossref]

M. Hashida, L. Gemini, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic grating structures on metal self-organized by double-pulse irradiation,” J. Laser Micro/Nanoeng. 9(3), 234–237 (2014).
[Crossref]

Liu, J. M.

Liu, X.

X. Liu, P.-K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng. Rep. 47(3–4), 49–121 (2004).
[Crossref]

Loukakos, P. A.

Magoulakis, E.

Miclea, M.

V. Hommes, M. Miclea, and R. Hergenröder, “Silicon surface morphology study after exposure to tailored femtosecond pulses,” Appl. Surf. Sci. 252(20), 7449–7460 (2006).
[Crossref]

Miyasaka, Y.

L. Gemini, M. Hashida, Y. Miyasaka, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic surface structures on titanium self-organized upon double femtosecond pulse exposures,” Appl. Surf. Sci. 336, 349–353 (2015).
[Crossref]

M. Hashida, L. Gemini, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic grating structures on metal self-organized by double-pulse irradiation,” J. Laser Micro/Nanoeng. 9(3), 234–237 (2014).
[Crossref]

Mocek, T.

L. Gemini, M. Hashida, Y. Miyasaka, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic surface structures on titanium self-organized upon double femtosecond pulse exposures,” Appl. Surf. Sci. 336, 349–353 (2015).
[Crossref]

M. Hashida, L. Gemini, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic grating structures on metal self-organized by double-pulse irradiation,” J. Laser Micro/Nanoeng. 9(3), 234–237 (2014).
[Crossref]

Mouskeftaras, A.

S. Guizard, S. Klimentov, A. Mouskeftaras, N. Fedorov, G. Geoffroy, and G. Vilmart, “Ultrafast breakdown of dielectrics: energy absorption mechanisms investigated by double pulse experiments,” Appl. Surf. Sci. 336, 206–211 (2015).
[Crossref]

Munz, M.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Na, S.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Neumeier, M.

K. Wallat, D. Dörr, R. Le Harzic, F. Stracke, D. Sauer, M. Neumeier, A. Kovtun, H. Zimmermann, and M. Epple, “Cellular reactions toward nanostructured silicon surfaces created by laser ablation,” J. Laser Appl. 24(4), 042016 (2012).
[Crossref]

Nishii, T.

M. Hashida, L. Gemini, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic grating structures on metal self-organized by double-pulse irradiation,” J. Laser Micro/Nanoeng. 9(3), 234–237 (2014).
[Crossref]

Novoselov, Y. N.

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” J. Exp. Theor. Phys. 113(1), 14–26 (2011).
[Crossref]

Pandelov, S. V.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Parriaux, O.

Pentzien, S.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

Pigeon, F.

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Qiu, J. R.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Reif, J.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

Reynaud, S.

Rohloff, M.

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
[Crossref]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

Rosenfeld, A.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref] [PubMed]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica upon cross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
[Crossref]

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116(7), 074902 (2014).
[Crossref]

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,” Appl. Surf. Sci. 278(1), 7–12 (2013).
[Crossref]

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
[Crossref]

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2010).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Sagan, Z.

Sakabe, S.

L. Gemini, M. Hashida, Y. Miyasaka, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic surface structures on titanium self-organized upon double femtosecond pulse exposures,” Appl. Surf. Sci. 336, 349–353 (2015).
[Crossref]

M. Hashida, L. Gemini, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic grating structures on metal self-organized by double-pulse irradiation,” J. Laser Micro/Nanoeng. 9(3), 234–237 (2014).
[Crossref]

Sakagami, H.

M. Hashida, L. Gemini, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic grating structures on metal self-organized by double-pulse irradiation,” J. Laser Micro/Nanoeng. 9(3), 234–237 (2014).
[Crossref]

Sauer, D.

K. Wallat, D. Dörr, R. Le Harzic, F. Stracke, D. Sauer, M. Neumeier, A. Kovtun, H. Zimmermann, and M. Epple, “Cellular reactions toward nanostructured silicon surfaces created by laser ablation,” J. Laser Appl. 24(4), 042016 (2012).
[Crossref]

Seleznev, L. V.

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” J. Exp. Theor. Phys. 113(1), 14–26 (2011).
[Crossref]

Shimizu, M.

M. Hashida, L. Gemini, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic grating structures on metal self-organized by double-pulse irradiation,” J. Laser Micro/Nanoeng. 9(3), 234–237 (2014).
[Crossref]

Sinitsyn, D. V.

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” J. Exp. Theor. Phys. 113(1), 14–26 (2011).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Soder, H.

Spaltmann, D.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

Spanakis, E.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

Stracke, F.

K. Wallat, D. Dörr, R. Le Harzic, F. Stracke, D. Sauer, M. Neumeier, A. Kovtun, H. Zimmermann, and M. Epple, “Cellular reactions toward nanostructured silicon surfaces created by laser ablation,” J. Laser Appl. 24(4), 042016 (2012).
[Crossref]

Stratakis, E.

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
[Crossref] [PubMed]

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

Sturm, H.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Tie, S.-L.

Tonchev, S.

Tzanetakis, P.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Vilmart, G.

S. Guizard, S. Klimentov, A. Mouskeftaras, N. Fedorov, G. Geoffroy, and G. Vilmart, “Ultrafast breakdown of dielectrics: energy absorption mechanisms investigated by double pulse experiments,” Appl. Surf. Sci. 336, 206–211 (2015).
[Crossref]

Vorobyev, A. V.

A. V. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Wagner, R.

R. Wagner and J. Gottmann, “Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation,” J. Phys. Conf. Ser. 59, 333–337 (2007).
[Crossref]

Wallat, K.

K. Wallat, D. Dörr, R. Le Harzic, F. Stracke, D. Sauer, M. Neumeier, A. Kovtun, H. Zimmermann, and M. Epple, “Cellular reactions toward nanostructured silicon surfaces created by laser ablation,” J. Laser Appl. 24(4), 042016 (2012).
[Crossref]

Whang, K.

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, X.

Xu, Z.

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys. 525(1–2), 74–86 (2013).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Xu, Z. Z.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Yang, J.

Yi, A. Y.

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Zhang, C.-Y.

Zhang, J.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zhao, B.

Zhao, F.

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys. 525(1–2), 74–86 (2013).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Zhao, F. L.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zimmermann, H.

K. Wallat, D. Dörr, R. Le Harzic, F. Stracke, D. Sauer, M. Neumeier, A. Kovtun, H. Zimmermann, and M. Epple, “Cellular reactions toward nanostructured silicon surfaces created by laser ablation,” J. Laser Appl. 24(4), 042016 (2012).
[Crossref]

Zorba, V.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Ann. Phys. (1)

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys. 525(1–2), 74–86 (2013).
[Crossref]

Appl. Phys. Lett. (2)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462 (2003).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation,” Appl. Phys. Lett. 103(25), 254101 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (3)

S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys., A Mater. Sci. Process. 110(3), 553–557 (2013).
[Crossref]

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, and C. Fotakis, “Tailoring the wetting response of silicon surfaces via fs laser structuring,” Appl. Phys., A Mater. Sci. Process. 93(4), 819–825 (2008).
[Crossref]

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

Appl. Surf. Sci. (7)

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197–198, 891–895 (2002).
[Crossref]

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, and J. Krüger, “Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel,” Appl. Surf. Sci. 336, 21–27 (2015).
[Crossref]

L. Gemini, M. Hashida, Y. Miyasaka, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic surface structures on titanium self-organized upon double femtosecond pulse exposures,” Appl. Surf. Sci. 336, 349–353 (2015).
[Crossref]

S. Guizard, S. Klimentov, A. Mouskeftaras, N. Fedorov, G. Geoffroy, and G. Vilmart, “Ultrafast breakdown of dielectrics: energy absorption mechanisms investigated by double pulse experiments,” Appl. Surf. Sci. 336, 206–211 (2015).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,” Appl. Surf. Sci. 278(1), 7–12 (2013).
[Crossref]

V. Hommes, M. Miclea, and R. Hergenröder, “Silicon surface morphology study after exposure to tailored femtosecond pulses,” Appl. Surf. Sci. 252(20), 7449–7460 (2006).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Laser-induced periodic surface structures on fused silica upon cross-polarized two-color double-fs-pulse irradiation,” Appl. Surf. Sci. 336, 39–42 (2015).
[Crossref]

J. Appl. Phys. (8)

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

M. Rohloff, S. K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, and J. Bonse, “Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences,” J. Appl. Phys. 110(1), 014910 (2011).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

T. J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, and J. Bonse, “Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water,” J. Appl. Phys. 116(7), 074902 (2014).
[Crossref]

J. Exp. Theor. Phys. (1)

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” J. Exp. Theor. Phys. 113(1), 14–26 (2011).
[Crossref]

J. Laser Appl. (2)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

K. Wallat, D. Dörr, R. Le Harzic, F. Stracke, D. Sauer, M. Neumeier, A. Kovtun, H. Zimmermann, and M. Epple, “Cellular reactions toward nanostructured silicon surfaces created by laser ablation,” J. Laser Appl. 24(4), 042016 (2012).
[Crossref]

J. Laser Micro/Nanoeng. (1)

M. Hashida, L. Gemini, T. Nishii, Y. Miyasaka, H. Sakagami, M. Shimizu, S. Inoue, J. Limpouch, T. Mocek, and S. Sakabe, “Periodic grating structures on metal self-organized by double-pulse irradiation,” J. Laser Micro/Nanoeng. 9(3), 234–237 (2014).
[Crossref]

J. Phys. Conf. Ser. (1)

R. Wagner and J. Gottmann, “Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation,” J. Phys. Conf. Ser. 59, 333–337 (2007).
[Crossref]

Laser Photonics Rev. (1)

A. V. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Mater. Sci. Eng. Rep. (1)

X. Liu, P.-K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng. Rep. 47(3–4), 49–121 (2004).
[Crossref]

Opt. Express (8)

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
[Crossref] [PubMed]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref] [PubMed]

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis, “Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses,” Opt. Express 21(15), 18501–18508 (2013).
[Crossref] [PubMed]

T. J.-Y. Derrien, J. Krüger, T. E. Itina, S. Höhm, A. Rosenfeld, and J. Bonse, “Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon,” Opt. Express 21(24), 29643–29655 (2013).
[Crossref] [PubMed]

J. Cong, J. Yang, B. Zhao, and X. Xu, “Fabricating subwavelength dot-matrix surface structures of molybdenum by transient correlated actions of two-color femtosecond laser beams,” Opt. Express 23(4), 5357–5367 (2015).
[Crossref] [PubMed]

X.-F. Li, C.-Y. Zhang, H. Li, Q.-F. Dai, S. Lan, and S.-L. Tie, “Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses,” Opt. Express 22(23), 28086–28099 (2014).
[Crossref] [PubMed]

K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury, “Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove,” Opt. Express 23(15), 19432–19441 (2015).
[Crossref]

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

J. Kim, S. Na, S. Cho, W. Chang, and K. Whang, “Surface ripple changes during Cr film ablation with a double ultrashort laser pulse,” Opt. Lasers Eng. 46(4), 306–310 (2008).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (2)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Proc. SPIE (1)

J. Bonse, A. Rosenfeld, and J. Krüger, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE 7994, 79940M (2010).
[Crossref]

Other (2)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Mach-Zehnder interferometer based experimental setup for the generation of double-fs-pulse irradiation sequences. Abbreviations: BS: beam splitter (non-polarizing), λ/2: half-wave plate, DL: delay-line, ∆t: temporal-delay.
Fig. 2
Fig. 2 Scanning electron micrographs of a titanium surface irradiated with NDPS = 50 parallel polarized single-color (λ = 800 nm, τ = 50 fs) double-fs-pulse sequences of varying delays (Δt = 0 – 4.7 ps) at a total peak fluence of F0,tot = 0.16 J/cm2 (F0,tot/2 = 0.7 × Fth,IR) [Data taken from [21]].
Fig. 3
Fig. 3 LSFL period ΛLSFL upon irradiation of titanium with NDPS = 50 parallel polarized single-color (λ = 800 nm, τ = 50 fs) double-fs-pulse sequences versus delay Δt - as obtained by 2D-Fourier analyses of the corresponding SEM images [F0,tot = 0.16 J/cm2, F0,tot/2 = 0.7 × Fth,IR)]. The full circles indicate the most frequent period while the error bars visualize the entire period range. The horizontal dashed line indicates the mean IR-LSFL period.
Fig. 4
Fig. 4 Scanning electron micrographs of a titanium surface irradiated with NDPS = 50 cross-polarized single-color (λ = 800 nm, τ = 50 fs) double-fs-pulse sequences at a total peak fluence of F0,tot = 0.2 J/cm2 (F0,tot/2 = 0.8 × Fth,IR) for large negative delays [Δt = −53 ps, (a) and (c)] and large positive delays [Δt = + 70 ps, (b) and (d)]. The images (c) and (d) represent detailed magnifications of the areas marked by white squares in (a) and (b). The red double-arrows in (a) and (b) indicated the direction of the polarization of the second fs-laser pulse of the double-pulse sequence.
Fig. 5
Fig. 5 Scanning electron micrographs of the surface of titanium after irradiation by NDPS = 50 two-color double-fs-pulse sequences at three different delays [(a): Δt = −10.0 ps, (b): Δt = + 0.3 ps, (c): Δt = + 3.3 ps]. The fluence of both pulses (IR/UV) was kept below the corresponding ablation threshold [IR: F0,IR = 0.7 × Fth,IR(50) = 0.08 J/cm2, UV: F0,UV = 0.7 × Fth,UV(50) = 0.05 J/cm2]. The red and blue double-arrows left to the images indicate the orientation of the polarization of both pulses (IR and UV) for parallel (upper row) and cross-polarized (lower row) sequences.
Fig. 6
Fig. 6 LSFL period ΛLSFL upon irradiation with NDPS = 50 cross-polarized two-color (IR: 800 nm & UV: 400 nm, τ = 50 fs) double-fs-pulse sequences versus the delay Δt - as obtained by 2D-Fourier analyses of the corresponding SEM images [IR: F0,IR = 0.7 × Fth,IR(50) = 0.08 J/cm2, UV: F0,UV = 0.7 × Fth,UV(50) = 0.05 J/cm2]. The circles indicate the most frequent period while the error bars visualize the entire period range. [open circles: UV-LSFL; full circles: IR-LSFL].
Fig. 7
Fig. 7 Scheme of SPP-based LIPSS formation on titanium upon two-color double-fs-pulse irradiation with crossed polarization. In the left part, the energy deposition to the sample is outlined, while the right one represents the corresponding final sample surface topography. In each sub-figure [(a) – (d), left] the lower graph visualizes the temporal intensity arriving at the surface. The direction of the polarization is indicated by green double-arrows below the corresponding pulses. The upper part sketches the sample (dark gray) and the laser-induced SPP-active area at the maximum of intensity where interference between the laser beam radiation and the laser-generated SPPs occurs (hatched red or blue circles, representing 800 nm and 400 nm). The sketch of the final surface topography is complemented by SEM micrographs exemplified at four specific delays on the right.

Tables (1)

Tables Icon

Table 1 Morphological characteristics of different types of LIPSS (LSFL & HSFL) on titanium after irradiation by N = 50 ultrashort laser pulses (τ = 50 fs) at 800 nm (IR) and 400 nm (UV) wavelengths. ⊥: perpendicular to the polarization, ||: parallel to the polarization. * Note: Although the LIPSS periods are larger than λ/2 at 400 nm wavelength, these structures are termed HSFL here, as they clearly have a different direction (origin) than the LSFL and represent the analogon to the HSFL formed at 800 nm wavelength.

Metrics