Abstract

In many research areas and application domains, the bulk optical properties of biological materials are of great interest. Unfortunately, these properties cannot be obtained easily for complex turbid media. In this study, a metamodeling approach has been proposed and applied for the fast and accurate estimation of the bulk optical properties from contactless and non-destructive hyperspectral scatter imaging (HSI) measurements. A set of liquid optical phantoms, based on intralipid, methylene blue and water, were prepared and the Vis/NIR bulk optical properties were characterized with a double integrating sphere and unscattered transmittance setup. Accordingly, the phantoms were measured with the HSI technique and metamodels were constructed, relating the Vis/NIR reflectance images to the reference bulk optical properties of the samples. The independent inverse validation showed good prediction performance for the absorption coefficient and the reduced scattering coefficient, with R2p values of 0.980 and 0.998, and RMSEP values of 0.032 cm−1 and 0.197 cm−1 respectively. The results clearly support the potential of this approach for fast and accurate estimation of the bulk optical properties of turbid media from contactless HSI measurements.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Robust metamodel-based inverse estimation of bulk optical properties of turbid media from spatially resolved diffuse reflectance measurements

Rodrigo Watté, Ben Aernouts, Robbe Van Beers, and Wouter Saeys
Opt. Express 23(21) 27880-27898 (2015)

Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements

Rodrigo Watté, Nghia Nguyen Do Trong, Ben Aernouts, Chyngyz Erkinbaev, Josse De Baerdemaeker, Bart Nicolaï, and Wouter Saeys
Opt. Express 21(26) 32630-32642 (2013)

Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range

Ben Aernouts, Eduardo Zamora-Rojas, Robbe Van Beers, Rodrigo Watté, Ling Wang, Mizuki Tsuta, Jeroen Lammertyn, and Wouter Saeys
Opt. Express 21(26) 32450-32467 (2013)

References

  • View by:
  • |
  • |
  • |

  1. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007).
  2. H. Cen, R. Lu, F. Mendoza, and R. M. Beaudry, “Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue,” Postharvest Biol. Technol. 85, 30–38 (2013).
    [Crossref]
  3. R. Lu and Y. Peng, “Hyperspectral scattering for assessing peach fruit firmness,” Biosystems Eng. 93(2), 161–171 (2006).
    [Crossref]
  4. C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
    [Crossref]
  5. A. Torricelli, L. Spinelli, M. Vanoli, M. Leitner, A. Nemeth, N. D. T. Nguyen, B. M. Nicolaï, and W. Saeys, “Optical Coherence Tomography (OCT), Space-resolved Reflectance Spectroscopy (SRS) and Time-resolved Reflectance Spectroscopy (TRS): Principles and Applications to Food Microstructures,” in Food Microstructures: Microscopy, Measurement and Modelling, V. Morris and K. Groves, eds., 1st ed. (WoodHead Publishing, 2013), p. 480.
  6. R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
    [Crossref] [PubMed]
  7. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40(7), 1155–1164 (2001).
    [Crossref] [PubMed]
  8. A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express 11(8), 853–867 (2003).
    [Crossref] [PubMed]
  9. P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express 15(6), 3301–3311 (2007).
    [Crossref] [PubMed]
  10. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74(6), 874–876 (1999).
    [Crossref]
  11. B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE 3548, 17–26 (1998).
    [Crossref]
  12. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30(31), 4474–4476 (1991).
    [Crossref] [PubMed]
  13. R. Watté, N. N. Do Trong, B. Aernouts, C. Erkinbaev, J. De Baerdemaeker, B. Nicolaï, and W. Saeys, “Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements,” Opt. Express 21(26), 32630–32642 (2013).
    [Crossref] [PubMed]
  14. H. Cen and R. Lu, “Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique,” Appl. Opt. 48(29), 5612–5623 (2009).
    [Crossref] [PubMed]
  15. J. Qin and R. Lu, “Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc. 61(4), 388–396 (2007).
    [Crossref] [PubMed]
  16. T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt. 39(34), 6487–6497 (2000).
    [Crossref] [PubMed]
  17. J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharvest Biol. Technol. 49(3), 355–365 (2008).
    [Crossref]
  18. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28(12), 2210–2215 (1989).
    [Crossref] [PubMed]
  19. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [Crossref] [PubMed]
  20. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37(31), 7401–7409 (1998).
    [Crossref] [PubMed]
  21. L. V. Wang and S. L. Jacques, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Methods Programs Biomed. 61(3), 163–170 (2000).
    [Crossref] [PubMed]
  22. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  23. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
    [Crossref] [PubMed]
  24. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
    [Crossref] [PubMed]
  25. N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18(7), 6811–6823 (2010).
    [Crossref] [PubMed]
  26. H. Shen and G. Wang, “Reply to “Comment on ‘A study on tetrahedron-based inhomogeneous Monte-Carlo optical simulation’”,” Biomed. Opt. Express 2(5), 1265–1267 (2011).
    [Crossref] [PubMed]
  27. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
    [Crossref] [PubMed]
  28. R. Graaff, M. H. Koelink, F. F. de Mul, W. G. Zijistra, A. C. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32(4), 426–434 (1993).
    [Crossref] [PubMed]
  29. M. Martinelli, A. Gardner, D. Cuccia, C. Hayakawa, J. Spanier, and V. Venugopalan, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express 19(20), 19627–19642 (2011).
    [Crossref] [PubMed]
  30. Q. Liu and N. Ramanujam, “Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media,” J. Opt. Soc. Am. A 24(4), 1011–1025 (2007).
    [Crossref] [PubMed]
  31. A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a monte carlo model,” Appl. Opt. 37(13), 2774–2780 (1998).
    [Crossref] [PubMed]
  32. J. S. Dam, T. Dalgaard, P. E. Fabricius, and S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39(7), 1202–1209 (2000).
    [Crossref] [PubMed]
  33. L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
    [Crossref]
  34. I. Couckuyt, D. Gorissen, T. Dhaene, and F. De Turck, “Inverse surrogate modeling: output performance space sampling,” in Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference (2010).
    [Crossref]
  35. I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
    [Crossref]
  36. T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Eng. Comput. 17(2), 129–150 (2001).
    [Crossref]
  37. G. G. Wang and S. Shan, “Review of metamodeling techniques in support of engineering design optimization,” J. Mech. Des. 129(4), 370–380 (2007).
    [Crossref]
  38. D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim. 13(4), 455–492 (1998).
    [Crossref]
  39. B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
    [Crossref] [PubMed]
  40. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
    [Crossref] [PubMed]
  41. S. A. Prahl, “Everything I think you should know about inverse adding-doubling,” http://omlc.ogi.edu/software/iad/iad-3-9-10.zip .
  42. E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
    [Crossref]
  43. G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5(4), 944–947 (1999).
    [Crossref]
  44. S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [Crossref] [PubMed]
  45. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
    [Crossref] [PubMed]
  46. M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
    [Crossref] [PubMed]
  47. I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
    [Crossref]
  48. I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of the First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (2009).
    [Crossref]
  49. D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).
  50. B. Aernouts, R. Watté, R. Van Beers, F. Delport, M. Merchiers, J. De Block, J. Lammertyn, and W. Saeys, “Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation,” Opt. Express 22(17), 20223–20238 (2014).
    [Crossref] [PubMed]
  51. R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

B. Aernouts, R. Watté, R. Van Beers, F. Delport, M. Merchiers, J. De Block, J. Lammertyn, and W. Saeys, “Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation,” Opt. Express 22(17), 20223–20238 (2014).
[Crossref] [PubMed]

C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]

2013 (4)

H. Cen, R. Lu, F. Mendoza, and R. M. Beaudry, “Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue,” Postharvest Biol. Technol. 85, 30–38 (2013).
[Crossref]

R. Watté, N. N. Do Trong, B. Aernouts, C. Erkinbaev, J. De Baerdemaeker, B. Nicolaï, and W. Saeys, “Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements,” Opt. Express 21(26), 32630–32642 (2013).
[Crossref] [PubMed]

B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref] [PubMed]

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]

2012 (1)

I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
[Crossref]

2011 (2)

2010 (4)

N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18(7), 6811–6823 (2010).
[Crossref] [PubMed]

L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
[Crossref]

I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
[Crossref]

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).

2009 (2)

2008 (3)

J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharvest Biol. Technol. 49(3), 355–365 (2008).
[Crossref]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
[Crossref] [PubMed]

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref] [PubMed]

2007 (4)

2006 (1)

R. Lu and Y. Peng, “Hyperspectral scattering for assessing peach fruit firmness,” Biosystems Eng. 93(2), 161–171 (2006).
[Crossref]

2003 (1)

2001 (2)

J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40(7), 1155–1164 (2001).
[Crossref] [PubMed]

T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Eng. Comput. 17(2), 129–150 (2001).
[Crossref]

2000 (3)

1999 (3)

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5(4), 944–947 (1999).
[Crossref]

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74(6), 874–876 (1999).
[Crossref]

1998 (4)

1996 (1)

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1993 (3)

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

1991 (1)

1989 (1)

1983 (1)

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[Crossref] [PubMed]

Aalders, M. C.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Aarnoudse, J. G.

Adam, G.

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[Crossref] [PubMed]

Aernouts, B.

Alexandrakis, G.

Allen, J. K.

T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Eng. Comput. 17(2), 129–150 (2001).
[Crossref]

Andersson-Engels, S.

Aruna, P.

Beaudry, R. M.

H. Cen, R. Lu, F. Mendoza, and R. M. Beaudry, “Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue,” Postharvest Biol. Technol. 85, 30–38 (2013).
[Crossref]

Beek, J. F.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5(4), 944–947 (1999).
[Crossref]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
[Crossref] [PubMed]

Berndt, K. W.

Bevilacqua, F.

Boas, D. A.

Cen, H.

H. Cen, R. Lu, F. Mendoza, and R. M. Beaudry, “Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue,” Postharvest Biol. Technol. 85, 30–38 (2013).
[Crossref]

H. Cen and R. Lu, “Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique,” Appl. Opt. 48(29), 5612–5623 (2009).
[Crossref] [PubMed]

Chance, B.

B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE 3548, 17–26 (1998).
[Crossref]

Comelli, D.

Couckuyt, I.

I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
[Crossref]

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).

I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
[Crossref]

I. Couckuyt, D. Gorissen, T. Dhaene, and F. De Turck, “Inverse surrogate modeling: output performance space sampling,” in Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference (2010).
[Crossref]

I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of the First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (2009).
[Crossref]

Crombecq, K.

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).

I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of the First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (2009).
[Crossref]

Cross, F. W.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Cubeddu, R.

A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express 11(8), 853–867 (2003).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74(6), 874–876 (1999).
[Crossref]

Cuccia, D.

Dalgaard, T.

Dam, J. S.

Danesini, G.

Dassel, A. C.

De Baerdemaeker, J.

De Block, J.

de Mul, F. F.

De Turck, F.

I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
[Crossref]

I. Couckuyt, D. Gorissen, T. Dhaene, and F. De Turck, “Inverse surrogate modeling: output performance space sampling,” in Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference (2010).
[Crossref]

de Vries, G.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5(4), 944–947 (1999).
[Crossref]

Declercq, F.

I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
[Crossref]

Delport, F.

Demeester, P.

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).

Dhaene, T.

I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
[Crossref]

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).

I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
[Crossref]

I. Couckuyt, D. Gorissen, T. Dhaene, and F. De Turck, “Inverse surrogate modeling: output performance space sampling,” in Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference (2010).
[Crossref]

I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of the First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (2009).
[Crossref]

Do Trong, N. N.

Doornbos, R. M.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Erkinbaev, C.

C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]

R. Watté, N. N. Do Trong, B. Aernouts, C. Erkinbaev, J. De Baerdemaeker, B. Nicolaï, and W. Saeys, “Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements,” Opt. Express 21(26), 32630–32642 (2013).
[Crossref] [PubMed]

Fabricius, P. E.

Fang, Q.

Farina, A.

Farrell, T. J.

G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37(31), 7401–7409 (1998).
[Crossref] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Forrester, A.

I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
[Crossref]

Foschum, F.

Gardner, A.

Garrido-Varo, A.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]

Gorissen, D.

I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
[Crossref]

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).

I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of the First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (2009).
[Crossref]

I. Couckuyt, D. Gorissen, T. Dhaene, and F. De Turck, “Inverse surrogate modeling: output performance space sampling,” in Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference (2010).
[Crossref]

Graaff, R.

Guan, B.

B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE 3548, 17–26 (1998).
[Crossref]

Guerrero-Ginel, J. E.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]

Hayakawa, C.

Herremans, E.

R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
[Crossref] [PubMed]

C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]

Hibst, R.

Ho, Q. T.

Honold, S.

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref] [PubMed]

Huang, S.

B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE 3548, 17–26 (1998).
[Crossref]

Ishimaru, A.

Jacques, S. L.

L. V. Wang and S. L. Jacques, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Methods Programs Biomed. 61(3), 163–170 (2000).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Jakubczyk, E.

C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]

Jones, D.

D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim. 13(4), 455–492 (1998).
[Crossref]

Kienle, A.

Knockaert, L.

I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
[Crossref]

Koch, P. N.

T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Eng. Comput. 17(2), 129–150 (2001).
[Crossref]

Koelink, M. H.

Lakowicz, J. R.

Lammertyn, J.

Lang, R.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Li, J.

Liang, J.

Lilge, L.

Liu, Q.

Lu, B.

Lu, R.

H. Cen, R. Lu, F. Mendoza, and R. M. Beaudry, “Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue,” Postharvest Biol. Technol. 85, 30–38 (2013).
[Crossref]

H. Cen and R. Lu, “Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique,” Appl. Opt. 48(29), 5612–5623 (2009).
[Crossref] [PubMed]

J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharvest Biol. Technol. 49(3), 355–365 (2008).
[Crossref]

J. Qin and R. Lu, “Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc. 61(4), 388–396 (2007).
[Crossref] [PubMed]

R. Lu and Y. Peng, “Hyperspectral scattering for assessing peach fruit firmness,” Biosystems Eng. 93(2), 161–171 (2006).
[Crossref]

Lucassen, G. W.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5(4), 944–947 (1999).
[Crossref]

Martinelli, M.

Mendoza, F.

H. Cen, R. Lu, F. Mendoza, and R. M. Beaudry, “Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue,” Postharvest Biol. Technol. 85, 30–38 (2013).
[Crossref]

Merchiers, M.

Michels, R.

Moulton, J. D.

Nguyen Do Trong, N.

C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]

Nicolaï, B.

Patterson, M. S.

Pedersen, C. B.

Peng, Y.

R. Lu and Y. Peng, “Hyperspectral scattering for assessing peach fruit firmness,” Biosystems Eng. 93(2), 161–171 (2006).
[Crossref]

Pérez-Marín, D.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]

Pham, T. H.

Pickering, J. W.

Pifferi, A.

Pilz, M.

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref] [PubMed]

Poplinski, J. D.

T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Eng. Comput. 17(2), 129–150 (2001).
[Crossref]

Prahl, S. A.

Qin, J.

J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharvest Biol. Technol. 49(3), 355–365 (2008).
[Crossref]

J. Qin and R. Lu, “Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc. 61(4), 388–396 (2007).
[Crossref] [PubMed]

Qu, X.

Ramanujam, N.

Ren, N.

Rogier, H.

I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
[Crossref]

Saeys, W.

R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
[Crossref] [PubMed]

B. Aernouts, R. Watté, R. Van Beers, F. Delport, M. Merchiers, J. De Block, J. Lammertyn, and W. Saeys, “Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation,” Opt. Express 22(17), 20223–20238 (2014).
[Crossref] [PubMed]

C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]

R. Watté, N. N. Do Trong, B. Aernouts, C. Erkinbaev, J. De Baerdemaeker, B. Nicolaï, and W. Saeys, “Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements,” Opt. Express 21(26), 32630–32642 (2013).
[Crossref] [PubMed]

B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref] [PubMed]

Schonlau, M.

D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim. 13(4), 455–492 (1998).
[Crossref]

Shan, S.

G. G. Wang and S. Shan, “Review of metamodeling techniques in support of engineering design optimization,” J. Mech. Des. 129(4), 370–380 (2007).
[Crossref]

Shen, H.

Simpson, T. W.

T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Eng. Comput. 17(2), 129–150 (2001).
[Crossref]

Spanier, J.

Spinelli, L.

Spott, T.

Steiner, R.

Sterenborg, H. J. C. M.

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
[Crossref] [PubMed]

Taroni, P.

Tian, J.

Torricelli, A.

A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express 11(8), 853–867 (2003).
[Crossref] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74(6), 874–876 (1999).
[Crossref]

Tromberg, B. J.

Tsuta, M.

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74(6), 874–876 (1999).
[Crossref]

A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a monte carlo model,” Appl. Opt. 37(13), 2774–2780 (1998).
[Crossref] [PubMed]

Van Beers, R.

van Gemert, M. J.

van Gemert, M. J. C.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5(4), 944–947 (1999).
[Crossref]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
[Crossref] [PubMed]

van Wieringen, N.

Venugopalan, V.

Verboven, P.

R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
[Crossref] [PubMed]

C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]

Wang, G.

Wang, G. G.

G. G. Wang and S. Shan, “Review of metamodeling techniques in support of engineering design optimization,” J. Mech. Des. 129(4), 370–380 (2007).
[Crossref]

Wang, L.

Wang, L. V.

L. V. Wang and S. L. Jacques, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Methods Programs Biomed. 61(3), 163–170 (2000).
[Crossref] [PubMed]

Wang, Z.

L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
[Crossref]

Watté, R.

Welch, A. J.

Welch, W.

D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim. 13(4), 455–492 (1998).
[Crossref]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Wilson, B. C.

Zamora-Rojas, E.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]

B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
[Crossref]

Zhang, Y.

B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE 3548, 17–26 (1998).
[Crossref]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Zhou, M.

L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
[Crossref]

Zijistra, W. G.

Adv. Eng. Softw. (1)

I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: implementation and performance analysis,” Adv. Eng. Softw. 49, 1–13 (2012).
[Crossref]

Appl. Opt. (12)

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993).
[Crossref] [PubMed]

S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
[Crossref] [PubMed]

J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40(7), 1155–1164 (2001).
[Crossref] [PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30(31), 4474–4476 (1991).
[Crossref] [PubMed]

H. Cen and R. Lu, “Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique,” Appl. Opt. 48(29), 5612–5623 (2009).
[Crossref] [PubMed]

T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt. 39(34), 6487–6497 (2000).
[Crossref] [PubMed]

A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28(12), 2210–2215 (1989).
[Crossref] [PubMed]

G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37(31), 7401–7409 (1998).
[Crossref] [PubMed]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35(13), 2304–2314 (1996).
[Crossref] [PubMed]

R. Graaff, M. H. Koelink, F. F. de Mul, W. G. Zijistra, A. C. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32(4), 426–434 (1993).
[Crossref] [PubMed]

A. Pifferi, P. Taroni, G. Valentini, and S. Andersson-Engels, “Real-time method for fitting time-resolved reflectance and transmittance measurements with a monte carlo model,” Appl. Opt. 37(13), 2774–2780 (1998).
[Crossref] [PubMed]

J. S. Dam, T. Dalgaard, P. E. Fabricius, and S. Andersson-Engels, “Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,” Appl. Opt. 39(7), 1202–1209 (2000).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett. 74(6), 874–876 (1999).
[Crossref]

Appl. Spectrosc. (1)

Biomed. Opt. Express (1)

Biosystems Eng. (1)

R. Lu and Y. Peng, “Hyperspectral scattering for assessing peach fruit firmness,” Biosystems Eng. 93(2), 161–171 (2006).
[Crossref]

Comput. Methods Programs Biomed. (2)

L. V. Wang and S. L. Jacques, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Methods Programs Biomed. 61(3), 163–170 (2000).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Eng. Comput. (1)

T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, “Metamodels for computer-based engineering design: Survey and recommendations,” Eng. Comput. 17(2), 129–150 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron. 5(4), 944–947 (1999).
[Crossref]

Innov. Food Sci. Emerg. Technol. (2)

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013).
[Crossref]

C. Erkinbaev, E. Herremans, N. Nguyen Do Trong, E. Jakubczyk, P. Verboven, B. Nicolaï, and W. Saeys, “Contactless and non-destructive differentiation of microstructures of sugar foams by hyperspectral scatter imaging,” Innov. Food Sci. Emerg. Technol. 24, 131–137 (2014).
[Crossref]

Int. J. RF Microw. Comput. Eng. (1)

I. Couckuyt, F. Declercq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-based infill optimization applied to electromagnetic problems,” Int. J. RF Microw. Comput. Eng. 20(5), 492–501 (2010).
[Crossref]

J. Biomed. Opt. (1)

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[Crossref] [PubMed]

J. Glob. Optim. (1)

D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim. 13(4), 455–492 (1998).
[Crossref]

J. Mach. Learn. Res. (1)

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A surrogate modeling and adaptive sampling toolbox for computer based design,” J. Mach. Learn. Res. 11, 2051–2055 (2010).

J. Mech. Des. (1)

G. G. Wang and S. Shan, “Review of metamodeling techniques in support of engineering design optimization,” J. Mech. Des. 129(4), 370–380 (2007).
[Crossref]

J. Mod. Opt. (1)

L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt. 57(13), 1163–1170 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

Med. Phys. (2)

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[Crossref] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Opt. Express (10)

R. Watté, N. N. Do Trong, B. Aernouts, C. Erkinbaev, J. De Baerdemaeker, B. Nicolaï, and W. Saeys, “Metamodeling approach for efficient estimation of optical properties of turbid media from spatially resolved diffuse reflectance measurements,” Opt. Express 21(26), 32630–32642 (2013).
[Crossref] [PubMed]

A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express 11(8), 853–867 (2003).
[Crossref] [PubMed]

P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, “Time-resolved diffuse optical spectroscopy of small tissue samples,” Opt. Express 15(6), 3301–3311 (2007).
[Crossref] [PubMed]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
[Crossref] [PubMed]

N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18(7), 6811–6823 (2010).
[Crossref] [PubMed]

M. Martinelli, A. Gardner, D. Cuccia, C. Hayakawa, J. Spanier, and V. Venugopalan, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express 19(20), 19627–19642 (2011).
[Crossref] [PubMed]

B. Aernouts, R. Watté, R. Van Beers, F. Delport, M. Merchiers, J. De Block, J. Lammertyn, and W. Saeys, “Flexible tool for simulating the bulk optical properties of polydisperse spherical particles in an absorbing host: experimental validation,” Opt. Express 22(17), 20223–20238 (2014).
[Crossref] [PubMed]

R. Watté, B. Aernouts, R. Van Beers, E. Herremans, Q. T. Ho, P. Verboven, B. Nicolaï, and W. Saeys, “Modeling the propagation of light in realistic tissue structures with MMC-fpf: a meshed Monte Carlo method with free phase function,” Opt. Express 23(13), 17467–17486 (2015).
[Crossref] [PubMed]

B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500-2250 nm range,” Opt. Express 21(26), 32450–32467 (2013).
[Crossref] [PubMed]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[Crossref] [PubMed]

Postharvest Biol. Technol. (2)

H. Cen, R. Lu, F. Mendoza, and R. M. Beaudry, “Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue,” Postharvest Biol. Technol. 85, 30–38 (2013).
[Crossref]

J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharvest Biol. Technol. 49(3), 355–365 (2008).
[Crossref]

Proc. SPIE (1)

B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE 3548, 17–26 (1998).
[Crossref]

Other (5)

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007).

A. Torricelli, L. Spinelli, M. Vanoli, M. Leitner, A. Nemeth, N. D. T. Nguyen, B. M. Nicolaï, and W. Saeys, “Optical Coherence Tomography (OCT), Space-resolved Reflectance Spectroscopy (SRS) and Time-resolved Reflectance Spectroscopy (TRS): Principles and Applications to Food Microstructures,” in Food Microstructures: Microscopy, Measurement and Modelling, V. Morris and K. Groves, eds., 1st ed. (WoodHead Publishing, 2013), p. 480.

I. Couckuyt, D. Gorissen, T. Dhaene, and F. De Turck, “Inverse surrogate modeling: output performance space sampling,” in Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference (2010).
[Crossref]

S. A. Prahl, “Everything I think you should know about inverse adding-doubling,” http://omlc.ogi.edu/software/iad/iad-3-9-10.zip .

I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of the First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration of the hyperspectral scatter imaging system.
Fig. 2
Fig. 2 Reference bulk optical properties estimated from DIS measurements for 16 liquid phantoms: (a) absorption coefficients µa spectra grouped according to the absorption level (1 – 4) and (b) reduced scattering coefficients µs ’ spectra grouped according to the scattering level (A – D).
Fig. 3
Fig. 3 Illustration of the 2D hyperspectral image of liquid phantom B3 (µa = 0.8 cm−1 and µs ’ = 9 cm−1 at 670 nm). The X-axis represents the wavelength dimension, while each horizontal line represents the reflectance spectrum for a particular source-detector distance on the scanning line.
Fig. 4
Fig. 4 Hyperspectral SRS profiles for the liquid phantoms of group B with the same scattering coefficient level µs ’ = 9 cm−1 and different levels of absorption: (a) B1: µa = 0 cm−1, (b) B2: µa = 0.4 cm−1, (c) B3: µa = 0.8 cm−1, (d) B4: µa = 1.2 cm−1 at 670 nm.
Fig. 5
Fig. 5 Scatter plots of predicted versus measured reflectance values for 12 liquid calibration phantoms (blue) and four validation phantoms (red) at four source-detector distances: (a) 0.1 cm, (b) 0.2 cm, (c) 0.4 cm, and (d) 0.8 cm.
Fig. 6
Fig. 6 Scatter plots of predicted versus measured bulk optical properties for the four validation liquid phantoms: (a) absorption coefficients µa ; (b) reduced scattering coefficients µs ’. The red dots represent the data of the 570 – 900 nm range, while the blue dots represent the 550 – 570 nm and 900 – 950 nm range. The blue line is a linear fit to all the data (blue and red dots), while the red line is the linear fit to the data of the reduced wavelength range (red dots).
Fig. 7
Fig. 7 Predicted and measured bulk optical properties spectra for the four liquid validation phantoms: (a) absorption coefficients µa ; (b) reduced scattering coefficients µs ’.

Tables (1)

Tables Icon

Table 1 Selection of calibration set (normal) and validation set (bold) of liquid phantoms.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

RMSE P = i n p r e d ( μ m e a s , i μ p r e d , i ) 2 n p r e d

Metrics