Abstract

We report on the fast wavelength switching in V-cavity laser (VCL) with quantum well intermixed tuning section. The laser wavelength can be switched between 32 channels at 100 GHz spacing using a single electrode control. The fabrication process involves a quantum well intermixing (QWI) process using KrF laser irradiation and rapid thermal annealing (RTA). The tuning current is less than 40 mA, much lower than previously demonstrated tunable VCL based on electro-thermal-optic effect. The wavelength switching is also faster by three orders of magnitude. The dynamic switching characteristics between two channels with different numbers of intermediate channels are investigated. It shows that the switching time is about 1 ns between adjacent channels and increases up to 12 ns with increasing number of intermediate channels.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of widely tunable V-cavity semiconductor laser using time-domain traveling-wave method

Lin Wu, Jian-Jun He, and Dominic Gallagher
J. Opt. Soc. Am. B 32(2) 309-317 (2015)

Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning

Sen Zhang, Jianjun Meng, Shanli Guo, Lei Wang, and Jian-Jun He
Opt. Express 21(11) 13564-13571 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
    [Crossref]
  2. J.-J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express 16(6), 3896–3911 (2008).
    [Crossref] [PubMed]
  3. J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with ∼40 dB side-mode suppression ratio,” Opt. Lett. 36(21), 4230–4232 (2011).
    [Crossref] [PubMed]
  4. S. Zhang, J. Meng, S. Guo, L. Wang, and J.-J. He, “Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning,” Opt. Express 21(11), 13564–13571 (2013).
    [Crossref] [PubMed]
  5. S. Guo, J. Meng, L. Wang, L. Zou, H. Zhu, and J.-J. He, “Experimental demonstration of subnano-second wavelength switching in V-coupled-cavity semiconductor laser,” in Asia Communications and Photonics conference (2012).
    [Crossref]
  6. W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disordering of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
    [Crossref]
  7. B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
    [Crossref]
  8. H. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. Yu, L. Ang, and X. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” IEEE J. Quantum Electron. 40(2), 166–174 (2004).
    [Crossref]
  9. S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
    [Crossref]
  10. S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
    [Crossref]
  11. M. Kaleem, X. Zhang, Y. Zhuang, J.-J. He, N. Liu, and J. J. Dubowski, “UV laser induced selective-area bandgap engineering for fabrication of InGaAsP/InP laser devices,” Opt. Laser Technol. 51, 36–42 (2013).
    [Crossref]
  12. R. Beal, V. Aimez, and J. J. Dubowski, “Excimer laser induced quantum well intermixing: a reproducibility study of the process for fabrication of photonic integrated devices,” Opt. Express 23(2), 1073–1080 (2015).
    [Crossref] [PubMed]
  13. E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photonics Technol. Lett. 14(9), 1243–1245 (2002).
    [Crossref]
  14. E. J. Skogen, J. W. Raring, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
    [Crossref]
  15. S. J. Pearton, A. Katz, and M. Geva, “Reproducible group-V partial pressure rapid thermal annealing of InP and GaAs,” J. Appl. Phys. 68(5), 2482–2488 (1990).
    [Crossref]
  16. O. Hulko, D. A. Thompson, J. A. Czaban, and J. G. Simmons, “The effect of different proximity caps on quantum well intermixing in InGaAsP/InP QW structures,” Semicond. Sci. Technol. 21(7), 870–875 (2006).
    [Crossref]

2015 (1)

2013 (2)

M. Kaleem, X. Zhang, Y. Zhuang, J.-J. He, N. Liu, and J. J. Dubowski, “UV laser induced selective-area bandgap engineering for fabrication of InGaAsP/InP laser devices,” Opt. Laser Technol. 51, 36–42 (2013).
[Crossref]

S. Zhang, J. Meng, S. Guo, L. Wang, and J.-J. He, “Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning,” Opt. Express 21(11), 13564–13571 (2013).
[Crossref] [PubMed]

2011 (1)

2008 (1)

2006 (1)

O. Hulko, D. A. Thompson, J. A. Czaban, and J. G. Simmons, “The effect of different proximity caps on quantum well intermixing in InGaAsP/InP QW structures,” Semicond. Sci. Technol. 21(7), 870–875 (2006).
[Crossref]

2004 (1)

H. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. Yu, L. Ang, and X. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” IEEE J. Quantum Electron. 40(2), 166–174 (2004).
[Crossref]

2003 (1)

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
[Crossref]

2002 (1)

E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photonics Technol. Lett. 14(9), 1243–1245 (2002).
[Crossref]

2000 (1)

L. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

1998 (2)

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

1997 (1)

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[Crossref]

1990 (1)

S. J. Pearton, A. Katz, and M. Geva, “Reproducible group-V partial pressure rapid thermal annealing of InP and GaAs,” J. Appl. Phys. 68(5), 2482–2488 (1990).
[Crossref]

1981 (1)

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disordering of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Aers, G.

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

Aimez, V.

Ang, L.

H. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. Yu, L. Ang, and X. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” IEEE J. Quantum Electron. 40(2), 166–174 (2004).
[Crossref]

Arokiaraj, J.

H. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. Yu, L. Ang, and X. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” IEEE J. Quantum Electron. 40(2), 166–174 (2004).
[Crossref]

Ayling, S. G.

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[Crossref]

Bardeen, J.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disordering of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Barton, J. S.

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
[Crossref]

E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photonics Technol. Lett. 14(9), 1243–1245 (2002).
[Crossref]

Beal, R.

Bryce, A. C.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[Crossref]

Buchanan, M.

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

Camacho, F.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

Camras, M. D.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disordering of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Charbonneau, S.

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

Coldren, L.

L. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

Coldren, L. A.

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
[Crossref]

E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photonics Technol. Lett. 14(9), 1243–1245 (2002).
[Crossref]

Coleman, J. J.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disordering of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Czaban, J. A.

O. Hulko, D. A. Thompson, J. A. Czaban, and J. G. Simmons, “The effect of different proximity caps on quantum well intermixing in InGaAsP/InP QW structures,” Semicond. Sci. Technol. 21(7), 870–875 (2006).
[Crossref]

Dapkus, P. D.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disordering of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Davies, M.

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

De La Rue, R. M.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

Delage, A.

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

Denbaars, S. P.

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
[Crossref]

E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photonics Technol. Lett. 14(9), 1243–1245 (2002).
[Crossref]

Djie, H.

H. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. Yu, L. Ang, and X. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” IEEE J. Quantum Electron. 40(2), 166–174 (2004).
[Crossref]

Dubowski, J. J.

R. Beal, V. Aimez, and J. J. Dubowski, “Excimer laser induced quantum well intermixing: a reproducibility study of the process for fabrication of photonic integrated devices,” Opt. Express 23(2), 1073–1080 (2015).
[Crossref] [PubMed]

M. Kaleem, X. Zhang, Y. Zhuang, J.-J. He, N. Liu, and J. J. Dubowski, “UV laser induced selective-area bandgap engineering for fabrication of InGaAsP/InP laser devices,” Opt. Laser Technol. 51, 36–42 (2013).
[Crossref]

Feng, Y.

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

Geva, M.

S. J. Pearton, A. Katz, and M. Geva, “Reproducible group-V partial pressure rapid thermal annealing of InP and GaAs,” J. Appl. Phys. 68(5), 2482–2488 (1990).
[Crossref]

Goldberg, R. D.

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

Guo, S.

Hamilton, C. J.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

Haysom, J.

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

He, J.-J.

M. Kaleem, X. Zhang, Y. Zhuang, J.-J. He, N. Liu, and J. J. Dubowski, “UV laser induced selective-area bandgap engineering for fabrication of InGaAsP/InP laser devices,” Opt. Laser Technol. 51, 36–42 (2013).
[Crossref]

S. Zhang, J. Meng, S. Guo, L. Wang, and J.-J. He, “Simple and compact V-cavity semiconductor laser with 50×100 GHz wavelength tuning,” Opt. Express 21(11), 13564–13571 (2013).
[Crossref] [PubMed]

J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with ∼40 dB side-mode suppression ratio,” Opt. Lett. 36(21), 4230–4232 (2011).
[Crossref] [PubMed]

J.-J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express 16(6), 3896–3911 (2008).
[Crossref] [PubMed]

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

Helmy, A. S.

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[Crossref]

Hess, K.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disordering of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Holonyak, N.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disordering of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Hulko, O.

O. Hulko, D. A. Thompson, J. A. Czaban, and J. G. Simmons, “The effect of different proximity caps on quantum well intermixing in InGaAsP/InP QW structures,” Semicond. Sci. Technol. 21(7), 870–875 (2006).
[Crossref]

Jin, J.

Kaleem, M.

M. Kaleem, X. Zhang, Y. Zhuang, J.-J. He, N. Liu, and J. J. Dubowski, “UV laser induced selective-area bandgap engineering for fabrication of InGaAsP/InP laser devices,” Opt. Laser Technol. 51, 36–42 (2013).
[Crossref]

Katz, A.

S. J. Pearton, A. Katz, and M. Geva, “Reproducible group-V partial pressure rapid thermal annealing of InP and GaAs,” J. Appl. Phys. 68(5), 2482–2488 (1990).
[Crossref]

Ke, M.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

Koteles, E. S.

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

Kowalski, O. P.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

Laidig, W. D.

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disordering of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

Liu, D.

Liu, N.

M. Kaleem, X. Zhang, Y. Zhuang, J.-J. He, N. Liu, and J. J. Dubowski, “UV laser induced selective-area bandgap engineering for fabrication of InGaAsP/InP laser devices,” Opt. Laser Technol. 51, 36–42 (2013).
[Crossref]

Marsh, J. H.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[Crossref]

McDougall, S. D.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

McIlvaney, K.

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[Crossref]

Mei, T.

H. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. Yu, L. Ang, and X. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” IEEE J. Quantum Electron. 40(2), 166–174 (2004).
[Crossref]

Meng, J.

Mitchell, I. V.

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

Ooi, B. S.

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[Crossref]

Pearton, S. J.

S. J. Pearton, A. Katz, and M. Geva, “Reproducible group-V partial pressure rapid thermal annealing of InP and GaAs,” J. Appl. Phys. 68(5), 2482–2488 (1990).
[Crossref]

Piva, P. G.

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

Poole, P.

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

Qiu, B.

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

Raring, J. W.

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
[Crossref]

Roberts, J.

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[Crossref]

Simmons, J. G.

O. Hulko, D. A. Thompson, J. A. Czaban, and J. G. Simmons, “The effect of different proximity caps on quantum well intermixing in InGaAsP/InP QW structures,” Semicond. Sci. Technol. 21(7), 870–875 (2006).
[Crossref]

Skogen, E. J.

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
[Crossref]

E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photonics Technol. Lett. 14(9), 1243–1245 (2002).
[Crossref]

Sookdhis, C.

H. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. Yu, L. Ang, and X. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” IEEE J. Quantum Electron. 40(2), 166–174 (2004).
[Crossref]

Street, M. W.

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[Crossref]

Tang, X.

H. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. Yu, L. Ang, and X. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” IEEE J. Quantum Electron. 40(2), 166–174 (2004).
[Crossref]

Thompson, D. A.

O. Hulko, D. A. Thompson, J. A. Czaban, and J. G. Simmons, “The effect of different proximity caps on quantum well intermixing in InGaAsP/InP QW structures,” Semicond. Sci. Technol. 21(7), 870–875 (2006).
[Crossref]

Wang, L.

Wang, Y.

Yang, F.

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

Yu, S.

H. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. Yu, L. Ang, and X. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” IEEE J. Quantum Electron. 40(2), 166–174 (2004).
[Crossref]

Yu, T.

Zhang, S.

Zhang, X.

M. Kaleem, X. Zhang, Y. Zhuang, J.-J. He, N. Liu, and J. J. Dubowski, “UV laser induced selective-area bandgap engineering for fabrication of InGaAsP/InP laser devices,” Opt. Laser Technol. 51, 36–42 (2013).
[Crossref]

Zhuang, Y.

M. Kaleem, X. Zhang, Y. Zhuang, J.-J. He, N. Liu, and J. J. Dubowski, “UV laser induced selective-area bandgap engineering for fabrication of InGaAsP/InP laser devices,” Opt. Laser Technol. 51, 36–42 (2013).
[Crossref]

Appl. Phys. Lett. (1)

W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disordering of an AlAs-GaAs superlattice by impurity diffusion,” Appl. Phys. Lett. 38(10), 776–778 (1981).
[Crossref]

IEEE J. Quantum Electron. (2)

B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[Crossref]

H. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. Yu, L. Ang, and X. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” IEEE J. Quantum Electron. 40(2), 166–174 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

S. Charbonneau, E. S. Koteles, P. Poole, J.-J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron. 4(4), 772–793 (1998).
[Crossref]

S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce, and J. H. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Sel. Top. Quantum Electron. 4(4), 636–646 (1998).
[Crossref]

L. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

E. J. Skogen, J. W. Raring, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1183–1190 (2003).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Tunable sampled-grating DBR lasers using quantum-well intermixing,” IEEE Photonics Technol. Lett. 14(9), 1243–1245 (2002).
[Crossref]

J. Appl. Phys. (1)

S. J. Pearton, A. Katz, and M. Geva, “Reproducible group-V partial pressure rapid thermal annealing of InP and GaAs,” J. Appl. Phys. 68(5), 2482–2488 (1990).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

M. Kaleem, X. Zhang, Y. Zhuang, J.-J. He, N. Liu, and J. J. Dubowski, “UV laser induced selective-area bandgap engineering for fabrication of InGaAsP/InP laser devices,” Opt. Laser Technol. 51, 36–42 (2013).
[Crossref]

Opt. Lett. (1)

Semicond. Sci. Technol. (1)

O. Hulko, D. A. Thompson, J. A. Czaban, and J. G. Simmons, “The effect of different proximity caps on quantum well intermixing in InGaAsP/InP QW structures,” Semicond. Sci. Technol. 21(7), 870–875 (2006).
[Crossref]

Other (1)

S. Guo, J. Meng, L. Wang, L. Zou, H. Zhu, and J.-J. He, “Experimental demonstration of subnano-second wavelength switching in V-coupled-cavity semiconductor laser,” in Asia Communications and Photonics conference (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic structure of the VCL.
Fig. 2
Fig. 2 PL wavelength map (a) and spectra in RTA-only (blue line) and QWI (green line) regions (b) of the KrF laser based QWI sample.
Fig. 3
Fig. 3 Tested peak wavelength tuning of VCL.
Fig. 4
Fig. 4 Tested superimposed 32-channel spectra (a) and single spectrum with SMSR of 35 dB (b) of VCL.
Fig. 5
Fig. 5 Wavelength switching waveforms of two consecutive super-modes (a) and super-modes with different intermediate mode number (b)
Fig. 6
Fig. 6 Wavelength switching time versus the number of intermediate channels.

Metrics